
Original Paper

Predicting Infant Sleep Patterns From Postpartum Maternal
Mental Health Measures: Machine Learning Approach

Rawan AlSaad1, PhD; Raghad Burjaq2, PhD; Majid AlAbdulla3,4, MD; Alaa Abd-alrazaq1, PhD; Javaid Sheikh1,
MD; Rajat Thomas1, PhD
1Weill Cornell Medical College in Qatar, Doha, Qatar
2Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
3Mental Health Services, Hamad Medical Corporation, Doha, Qatar
4College of Medicine, Qatar University, Doha, Qatar

Corresponding Author:
Rawan AlSaad, PhD
Weill Cornell Medical College in Qatar
2700 Education City
Doha
Qatar
Phone: 974 44928830
Email: rta4003@qatar-med.cornell.edu

Abstract
Background: Postpartum maternal mental health (MMH) symptoms, including depression, anxiety, and childbirth-related
post-traumatic stress disorder, are known to influence infant sleep trajectories. While previous research has examined their
individual and combined associations, the predictive utility of these MMH symptoms for the early identification of infant sleep
problems through machine learning (ML) remains understudied.
Objective: This study aimed to examine whether postpartum MMH measures can predict infant sleep outcomes during the
first year of life. The analysis focused on 2 clinically relevant sleep indicators: (1) nocturnal sleep duration and (2) night
awakening frequency.
Methods: A total of 409 mother-infant dyads were included in the study. Predictor variables comprised postpartum MMH
symptoms assessed between 3 and 12 months postpartum, along with sociodemographic characteristics of mothers and
infants. MMH symptoms were measured using 3 validated instruments: the Edinburgh Postnatal Depression Scale, the
Hospital Anxiety and Depression Scale, and the City Birth Trauma Scale. Infant sleep outcomes were assessed using the
Brief Infant Sleep Questionnaire. Six supervised ML algorithms were evaluated: logistic regression, random forest, support
vector classifier, extreme gradient boosting, Light Gradient Boosting Machine, and multilayer perceptron. Post hoc feature
importance analyses were conducted to identify the most influential predictors associated with each infant sleep outcome.
Results: All models demonstrated high predictive performance. The best model achieved a precision-recall area under the
curve of 0.92, F1-score of 0.84, and accuracy of 0.88 for predicting short nocturnal sleep duration. For frequent night
awakenings, the top precision-recall area under the curve was 0.91, with an F1-score of 0.78 and accuracy of 0.85. Key
predictors included maternal age and total scores from the Edinburgh Postnatal Depression Scale, Hospital Anxiety and
Depression–Anxiety subscale, and City Birth Trauma Scale, with individual symptom items offering additional discriminative
value.
Conclusions: ML models can accurately predict which infants are at risk for suboptimal sleep based on MMH measures,
enabling personalized, responsive, and developmentally informed postpartum care that promotes long-term maternal and infant
well-being.
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Introduction
Infant sleep plays a foundational role in early neurodevel-
opment, with significant implications for cognitive function-
ing, emotional regulation, physical growth, and long-term
health outcomes [1-3]. During the first year postpartum,
infant sleep patterns are highly dynamic and marked by
individual variability in both nocturnal sleep duration and the
frequency of night awakenings. Insufficient or fragmented
sleep during this critical period has been associated with
impaired memory consolidation, behavioral dysregulation,
and suboptimal emotional development [4,5].

A growing body of research [6-12] has demonstrated
that maternal mental health (MMH) symptoms during the
postpartum period, including depression [13,14], anxiety
[8,15], and childbirth-related post-traumatic stress disorder
(CB-PTSD) [16,17], are associated with alterations in infant
sleep architecture. However, the underlying mechanisms
through which these maternal conditions influence infant
sleep remain poorly understood [18]. Furthermore, most prior
studies have examined these symptoms in isolation or as
covariates, without evaluating their collective predictive value
using integrative modeling approaches.

In parallel, machine learning (ML) approaches offer a
powerful alternative to traditional regression techniques.
Beyond simply reproducing associations already established
using regression or structural equation models, ML offers
added value by flexibly capturing nonlinear relationships
and higher-order interactions among MMH symptoms and
covariates. In this context, ML models can benchmark a range
of algorithms on predictive performance, support individual-
level risk stratification, and highlight symptom patterns that
are most informative for early identification of infants at
risk of sleep disturbance. In turn, this can refine existing
theoretical models and guide more targeted, data-driven
clinical decision support.

Recent studies have demonstrated the utility of ML in
various infant sleep and postpartum mental health appli-
cations [19]. For example, Wang et al [20] developed
an automated sleep-stage classifier using heart rate and
respiratory rate data to predict white matter development
in preterm infants. Similarly, Werth et al [21] designed
a deep learning–based system for sleep-stage classification
in preterm infants using electrocardiogram (ECG) signals.
Additionally, the Sleep Well Baby project introduced a
real-time sleep-wake state prediction algorithm based on
physiological signals, facilitating improved monitoring in
neonatal intensive care units [22]. In another study, Chang
et al [23] utilized a multimodal wearable device to collect
audio, ECG, and motion data, employing transformer-based
neural networks to classify infant sleep/wake states with high
accuracy. Furthermore, Huang et al [24] applied ML models
to classify and identify infant sleep positions. However,
existing ML-based studies have mostly focused on charac-
terizing infant sleep problems using demographic, behavio-
ral, or sensor-derived features, without explicitly leveraging
MMH symptoms as primary predictors. To date, no study
has examined whether postpartum MMH symptoms can be
used, in conjunction with ML methods, to predict infant sleep
patterns during the first year of life.

The present study addresses this gap by leveraging ML
methods to predict infant sleep trajectories across the first
year postpartum based on MMH symptoms and sociodemo-
graphic characteristics of mothers and infants. Specifically,
we aimed to evaluate the performance of six supervised ML
models in predicting two clinically relevant sleep outcomes:
nocturnal sleep duration and the frequency of night awaken-
ings (Figure 1). In addition, feature importance analyses were
conducted to identify key MMH predictors associated with
each outcome.

Figure 1. Overview of the machine learning framework used to predict infant sleep patterns based on postpartum maternal mental health indicators.
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We hypothesized that postpartum MMH symptom measures,
in combination with basic maternal-infant characteristics,
would enable supervised ML models to accurately predict
infant sleep outcomes. To operationalize this hypothesis, we
addressed the following research questions: (1) Can MMH
indicators and sociodemographic characteristics accurately
predict infant sleep outcomes (ie, nocturnal sleep duration and
night awakening frequency) during the first year postpar-
tum using ML models? and (2) Which MMH features are
most predictive of infant sleep outcomes across the first
year postpartum? By characterizing the predictive utility of
MMH symptoms and elucidating the most influential features,
this study seeks to inform early screening and intervention
strategies to optimize both MMH and infant developmental
well-being.

Methods
Study Population and Data Sources
This study utilized a publicly available dataset [11] com-
prising 410 mother-infant dyads, collected via an online
cross-sectional survey conducted between June and Septem-
ber 2020 at a university hospital in Switzerland. Eligible
participants were birth mothers aged 18 years or older with
infants between 3 and 12 months of age at the time of data
collection and with no reported major neonatal complications.

The dataset included measures of MMH symptoms, infant
sleep outcomes, and sociodemographic characteristics of both
mothers and infants. A detailed description of the input
features used in the analysis is provided in Multimedia
Appendix 1. One mother-infant dyad was excluded due to
missing information on nocturnal sleep duration, resulting in
a final sample of 409 dyads.
Data Elements

MMH Measures
MMH symptoms were assessed using 3 validated self-
report instruments: the Edinburgh Postnatal Depression Scale
(EPDS), the Hospital Anxiety and Depression Scale-Anxi-
ety subscale (HADS-A), and the City Birth Trauma Scale
(CBTS). These measures were selected to comprehensively
capture postpartum symptoms of depression, anxiety, and
CB-PTSD, respectively.

The EPDS is a 10-item screening tool designed to detect
symptoms of postnatal depression in women [25]. It focuses
on emotional and cognitive symptoms experienced during
the preceding week, excluding somatic complaints that may
overlap with normal postpartum changes. Each item is scored
on a 4-point Likert scale, and total scores ranging from 0 to
40, with higher scores indicating greater symptom severity.

The HADS-A is the anxiety subscale of the Hospital
Anxiety and Depression Scale [26]. It consists of 7 items
that assess the frequency and severity of anxiety symptoms
experienced during the preceding week. Responses are rated
on a 4-point scale, yielding a total score ranging from 0 to 21,

where higher scores reflect more severe anxiety symptomatol-
ogy.

The CBTS is a 29-item instrument [27] specifically
developed to assess CB-PTSD symptoms based on the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5). The scale is divided into 2 subscales: the
birth-related symptoms subscale, which assesses intrusion and
avoidance symptoms as well as a subset of negative mood
items, and the general symptoms subscale, which captures
remaining negative cognition and hyperarousal symptoms.
The total score for the DSM-5–based items ranges from
0 to 60, with higher scores indicating greater severity of
CB-PTSD symptoms. Together, these 3 instruments provided
a multidimensional assessment of postpartum MMH, enabling
the identification of symptom patterns relevant to infant sleep
outcomes.

Infant Sleep Measures
Infant sleep was assessed using the Brief Infant Sleep
Questionnaire (BISQ), a widely used and validated parent-
report instrument designed to evaluate sleep behavior in
infants and toddlers [28]. Mothers were asked to report
on their infant’s sleep patterns over the preceding week,
including total nocturnal sleep duration (between 7:00 PM
and 7:00 AM), frequency of night awakenings, and method of
falling asleep. For the purposes of this study, 2 primary sleep
outcomes were derived and categorized as binary variables:
nocturnal sleep duration and night awakenings, both of which
serve as indicators of infant sleep quality.

Nocturnal sleep duration was classified as either normal
(coded as 0) or insufficient (coded as 1). Infants were
categorized as having normal nocturnal sleep if their reported
sleep duration was ≥9 hours, for all infant age groups. Infants
who slept for less than 9 hours per night were classified as
having insufficient nocturnal sleep duration. This threshold
aligns with prior research and pediatric sleep guidelines that
recommend a minimum of 9 hours of nighttime sleep for
infants aged 3 to 12 months [29] .

Night awakenings were categorized based on age-specific
thresholds. For infants aged 3 to 6 months, normal was
defined as ≤3 awakenings per night. For infants aged 6 to 9
and 9 to 12 months, normal was defined as ≤2 awakenings
per night. Infants exceeding these thresholds were classi-
fied as having frequent night awakenings, consistent with
existing sleep research indicating that night waking typically
decreases with age as self-regulation improves [30].

Nocturnal sleep duration and night-awakening frequency
were modeled as separate primary outcomes because
they capture distinct dimensions of infant sleep—quan-
tity (duration) versus continuity (awakenings)—that may
have partially different determinants (eg, circadian sched-
uling/feeding patterns versus arousal regulation) and lead
to different clinical actions. Their measurement proper-
ties also differ (duration: continuous; awakenings: count/
ordinal), warranting distinct modeling approaches and
metrics. Analyzing them separately preserves interpretability
of feature effects and supports symptom-targeted guidance.
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Although the 2 domains can co-occur, our predictive focus is
outcome-specific.

Data Preprocessing
Preprocessing steps included computing total scores for
the maternal mental health instruments (EPDS, HADS-
A, and CBTS) according to their manuals and recoding
response options for consistency across instruments. For
each instrument, both the individual item responses and the
derived total scores were retained as candidate predictors,
allowing the models to leverage overall symptom burden
as well as more fine-grained symptom patterns (eg, spe-
cific anxiety, depression, or trauma-related items). Missing
values were imputed (numerical features: mean; categori-
cal features: mode). Numerical features were then stand-
ardized (z score), and categorical features were one-hot
encoded to ensure consistent transformations during model
training and evaluation. This procedure yielded a clean,
model-ready feature matrix for all classifiers. Because the
study’s primary aim was to evaluate predictive performance
rather than coefficient-level inference, we did not perform
formal multicollinearity diagnostics (eg, VIF). Including both
total scores and item-level responses intentionally introduces
some correlation among predictors; however, many of the
algorithms employed (eg, tree-based learners and regularized
linear models) are designed to handle correlated and partially
redundant features by down-weighting or shrinking less
informative variables. Potential overfitting from the expanded
feature space was further mitigated through cross-validated
hyperparameter tuning and evaluation on a held-out test set.

ML Models
Six ML algorithms were employed to predict infant sleep
outcomes based on MMH measures and demographic
features. These models were selected to represent a diverse
range of linear and nonlinear classifiers, including both
ensemble and neural network-based approaches.

• Logistic regression: A linear classification algorithm
that estimates the probability of a binary outcome based
on a weighted combination of input features.

• Random forest: An ensemble learning method that
constructs multiple decision trees during training and
outputs the class that is the mode of the predictions of
the individual trees.

• Support vector classifier: A kernel-based method that
identifies the optimal hyperplane separating classes in a
high-dimensional feature space.

• extreme gradient boosting (XGBoost): A gradient-boos-
ted decision tree algorithm known for its scalability and
performance. It builds an ensemble of weak learn-
ers sequentially, optimizing residual errors from prior
iterations.

• Light gradient boosting machine (LightGBM): A
gradient boosting framework that uses histogram-based
learning and leaf-wise tree growth.

• Multilayer perceptron (MLP): A feedforward artificial
neural network composed of fully connected layers.
It captures complex, nonlinear interactions among
features and is trained using backpropagation.

Each questionnaire item and each derived total score was
treated as a separate candidate predictor. Modern super-
vised ML algorithms (eg, tree-based ensembles and regular-
ized models) are generally robust to moderately correlated
predictors and can down-weight or ignore redundant features
during training, so including both item-level and total-score
features does not compromise model learning or model
behavior; instead, it allows the algorithm to “decide” whether
predictive signal is better captured at the composite-score or
item level.

Models Training and Evaluation Strategy
Both outcome variables exhibited class imbalance. For
nocturnal sleep duration, 359/409 infants (87.8%) were
classified as normal (class 0) and 50/409 (12.2%) as
insufficient (class 1). For night awakenings, 346/409
infants (84.6%) were classified as normal (class 0) and
63/409 (15.4%) as elevated (class 1). To address this, we
applied 2 strategies. First, we evaluated each model using
4 sampling methods: no sampling, random upsampling,
random downsampling, and synthetic minority oversampling
technique (SMOTE). This allowed us to assess the impact of
different data distributions on model performance. Second,
we used evaluation metrics suited for imbalanced data. In
addition to accuracy, we computed the precision-recall area
under the curve (PR-AUC), which focuses on the minority
class and is not influenced by the number of true nega-
tives. We also reported the F1-score, the harmonic mean
of precision and recall, which balances false positives and
false negatives. Together, these strategies ensured reliable
evaluation of model performance in the context of class
imbalance.

All analyses were conducted at the level of the mother-
infant dyad. The dataset (N=409 dyads) was randomly split
into training (327/409, 80%) and test (82/409, 20%) sets,
using stratified sampling to preserve the proportion of infants
with nocturnal sleep disturbance and frequent night awaken-
ings in both partitions. All model development (including
hyperparameter tuning and internal validation) was performed
exclusively on the training set. All analyses were imple-
mented in Python and performed on a high-performance
computing node equipped with an NVIDIA A100 GPU (80
GB memory).

To quantify the variability and robustness of model
performance, we additionally performed stratified 5-fold
cross-validation within the training set for each model-sam-
pling combination. For every fold, we computed PR-AUC,
accuracy, and F1-score and summarized their distribution
across folds. Final performance for each model was then
evaluated on the held-out test set.

Models Explainability
To characterize which MMH and covariate features contrib-
uted most to predictions, we first computed model-based
feature importance for the best-performing model for each
outcome (as determined by PR-AUC on the held-out test
set), using the model’s native importance measure. To further
enhance interpretability, we then performed a post hoc
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explainability analysis using Shapley additive explanations
(SHAP). For each outcome, we computed SHAP values
for all input features. SHAP values quantify the marginal
contribution of each feature to the predicted probability of
the positive (sleep disturbance) class for individual mother-
infant dyads. We summarized global importance by the
mean absolute SHAP value across participants and visual-
ized the distribution of feature effects using SHAP sum-
mary (beeswarm) plots, as complementary views to the main
feature-importance analyses.
Ethical Considerations
This study did not involve the collection or generation of
original human subject data. Instead, it utilized publicly
available, deidentified data from a licensed source. As such,
institutional review board approval and informed consent
were not required.

Results
Participant Characteristics
A total of 409 mother-infant dyads were included. Participant
characteristics and summary measures are shown in Table 1.
The mean maternal age was 30.20 (SD 4.36) years. Nearly
half held a university degree (192/409, 46.9%); 388 out of
409 (94.9%) were in a couple relationship. Overall, 51.6%
(211/409) of the infants were female and 48.4% (198/409)
were male. The mean gestational age at birth was 39.11
(SD 1.90) weeks. At assessment, infants were distributed as
follows: 147/409 (35.9%) were aged 3 to <6 months, 133/409
(32.5%) aged 6 to <9 months, and 129/409 (31.5%) aged 9 to
<12 months. MMH means were 9.06 (SD 6.76) on the EPDS,
7.85 (SD 4.26) on the HADS-A, and 13.15 (SD 10.81) on the
CBTS.

Table 1. Sample characteristics and key measures (N=409).
Domain and variable Value
Maternal
  Age (y), mean (SD) 30.20 (4.36)
  Education, n (%)
   University degree 192 (46.9)
   Applied Science/Tech diploma 88 (21.5)
   Postsecondary/apprenticeship 103 (25.2)
   Completed compulsory school 24 (5.9)
   No formal education 2 (0.5)
  Marital status, n (%)
   Couple relationship 388 (94.9)
   Single 14 (3.4)
   Separated/divorced/widowed 7 (1.7)
  Pregnancy/birth
   Gestational age at birth (wk), mean (SD) 39.11 (1.90)
Infant
  Sex, n (%)
   Female 211 (51.6)
   Male 198 (48.4)
  Age group, n (%)
   3 to <6 mo 147 (35.9)
   6 to <9 mo 133 (32.5)
   9 to <12 mo 129 (31.5)
  Maternal mental health, mean (SD)
   EPDSa total 9.06 (6.76)
   HADS-Ab total 7.85 (4.26)
   CBTSc total 13.15 (10.81)

aEPDS: Edinburgh Postnatal Depression Scale.
bHADS-A: Hospital Anxiety and Depression Scale-Anxiety Subscale.
cCBTS: City Birth Trauma Scale.
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Prediction of Nocturnal Sleep Duration

Models Performance
Figure 2 presents PR-AUC values for each model across
4 sampling strategies. All configurations achieved PR-AUC
values above 0.88, with XGBoost with SMOTE highest
(0.931), followed by logistic regression with SMOTE

(0.924). Accuracy (Figure 3) showed greater variability,
with XGBoost without sampling highest (0.886), followed
by random forest without sampling or with upsampling
(0.878). F1-scores (Figure 4) mirrored these trends: XGBoost
without sampling achieved the highest F1 (0.840), followed
by random forest (0.821) and support vector classifier/MLP
(0.820) with either no sampling or SMOTE.

Figure 2. Comparison of the precision-recall area under the curve (PR-AUC) across models and sampling methods for outcome nocturnal sleep
duration. PR-AUC quantifies how well a model can distinguish positive cases (infants with insufficient nocturnal sleep duration) from negative ones
across various thresholds, especially under class imbalance conditions. LightGBM: light gradient boosting machine; MLP: multilayer perceptron;
SMOTE: synthetic minority oversampling technique; SVC: support vector classifier; XGBoost: extreme gradient boosting.
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Figure 3. Comparison of accuracy across models and sampling methods for outcome nocturnal sleep duration. Accuracy represents the overall
proportion of correct predictions, combining both positive and negative cases, and provides a broad measure of model correctness. LightGBM:
light gradient boosting machine; MLP: multilayer perceptron; SMOTE: synthetic minority oversampling technique; SVC: support vector classifier;
XGBoost: extreme gradient boosting.

Figure 4. Comparison of F1-score across models and sampling methods for outcome nocturnal sleep duration. The F1-score balances precision
and recall, making it a valuable metric for assessing model performance in the context of imbalanced datasets. LightGBM: light gradient boosting
machine; MLP: multilayer perceptron; SMOTE: synthetic minority oversampling technique; SVC: support vector classifier; XGBoost: extreme
gradient boosting.
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Feature Importance Analysis
Figure 5 shows the most influential predictors of short
nocturnal sleep duration: maternal age and total scores
on the EPDS, HADS-A, and CBTS. Individual items also
contributed meaningfully, particularly EPDS Item 2 (I have
looked forward with enjoyment to things) and CBTS Item
15 (Feeling detached from others). To further probe how

individual feature values contributed to predictions for the
best-performing model, we examined SHAP summary plots
for the nocturnal sleep outcome (Multimedia Appendix 1).
These global SHAP patterns were broadly consistent with the
main feature-importance rankings and illustrate how higher
maternal symptom scores tend to shift predictions toward
increased risk of nocturnal sleep disturbance.

Figure 5. Feature importance analysis for outcome nocturnal sleep duration. EPDS: Edinburgh Postnatal Depression Scale; HADS: Hospital Anxiety
and Depression Scale; CBTS: City Birth Trauma Scale.

Prediction of Frequent Night Awakenings

Models Performance
Figure 6 reports PR-AUC for predicting night awakenings
frequency across models and sampling strategies. All models
performed well, typically exceeding 0.83, with logistic
regression highest (0.91) and MLP close behind (0.89).
Figure 7 shows accuracy, with random forest without

sampling highest (0.85) and MLP and XGBoost without
sampling at 0.81; downsampling reduced accuracy for all
models. F1-scores (Figure 8) mirrored accuracy, with MLP
and XGBoost without sampling at 0.76 and random forest
with SMOTE at 0.78. Models trained on downsampled data
had the lowest F1-scores, underscoring the performance cost
of sample reduction despite improved class balance.
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Figure 6. Comparison of the precision-recall area under the curve (PR-AUC) across models and sampling methods for outcome night awakenings
frequency. LightGBM: light gradient boosting machine; MLP: multilayer perceptron; SMOTE: synthetic minority oversampling technique; SVC:
support vector classifier; XGBoost: extreme gradient boosting.

Figure 7. Comparison of accuracy across models and sampling methods for outcome night awakenings frequency. LightGBM: light gradient
boosting machine; MLP: multilayer perceptron; SMOTE: synthetic minority oversampling technique; SVC: support vector classifier; XGBoost:
extreme gradient boosting.
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Figure 8. Comparison of F1-score across models and sampling methods for outcome night awakenings frequency. LightGBM: light gradient boosting
machine; MLP: multilayer perceptron; SMOTE: synthetic minority oversampling technique; SVC: support vector classifier; XGBoost: extreme
gradient boosting.

Feature Importance Analysis
Feature importance analysis identified the most influential
predictors of elevated night awakening frequency (Figure 9).
As with nocturnal sleep duration, maternal age and total
EPDS, HADS-A, and CBTS scores were top predictors.
Individual items also contributed, notably HADS-A Item 11
(I feel restless and cannot seem to stay still) and CBTS Item

21 (Having difficulty concentrating). Infant age also emerged
as a relevant predictor. An analogous SHAP summary plot for
night awakenings (Multimedia Appendices 1–3) confirms the
prominence of MMH features and illustrates how variations
in these scores and sociodemographic factors shift individual
predictions toward higher or lower night-awakening risk.
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Figure 9. Feature importance analysis for outcome night awakenings frequency. EPDS: Edinburgh Postnatal Depression Scale; HADS: Hospital
Anxiety and Depression Scale.

Discussion
Key Findings
This study evaluated the utility of postpartum MMH measures
in predicting infant sleep patterns using an ML approach.
Notably, supervised ML models trained on standardized
psychological screening instruments (EPDS, HADS-A, and
CBTS), combined with basic demographic and maternal
variables, demonstrated high predictive accuracy for both
outcomes: insufficient nocturnal sleep duration and frequent
night awakenings. These findings indicate the feasibility
of using MMH symptoms to identify infants at risk for
suboptimal sleep patterns. It also confirms the feasibility
of integrating ML tools into postpartum care pathways to
facilitate early risk identification.
Predictors of Infant Sleep Patterns
Maternal age emerged as a top predictor for both out-
comes, potentially reflecting links with parenting experience,
physiological resilience, and contextual factors such as social
support and caregiving efficacy. Prior work associating
younger age with higher postpartum depression and poorer
infant sleep [7,31] is consistent with its predictive strength in
our models.

Total scores from the EPDS, HADS-A, and CBTS were
among the most influential features in both models. Higher
total EPDS scores indicate more severe postpartum depres-
sive symptoms, which can impact maternal responsiveness

and infant sleep regulation. Elevated anxiety levels (HADS-
A) in mothers may lead to increased nighttime interactions,
potentially disrupting infant sleep. Additionally, higher CBTS
scores reflect greater CB-PTSD symptoms, which can affect
maternal-infant bonding and sleep routines. These aggre-
gate scores likely reflect the cumulative burden of post-
partum psychological distress, which has been linked in
prior research to disruptions in maternal caregiving behav-
ior, nighttime responsiveness, and the emotional climate
surrounding infant sleep routines [13,32,33].

Beyond aggregate symptom scores, several individual
questionnaire items provided fine-grained insights. For
example, EPDS Item 2 (“I have looked forward with
enjoyment to things”)—a measure of anhedonia—was highly
predictive of short nocturnal sleep duration. Lower scores on
this item suggest anhedonia, a core symptom of depression,
which may influence maternal engagement in establishing
infant sleep routines. Similarly, CBTS Item 15 (“I felt distant
or cut off from other people”) was ranked highly predictive
of short nocturnal sleep duration, suggesting that maternal
emotional withdrawal and social detachment, characteristic of
childbirth-related trauma, may negatively impact the ability to
establish secure and consistent nighttime routines.

In the models predicting frequent night awakenings,
several additional features emerged as specific to this
outcome. These included HADS-A Item 11 (“I feel restless
and can’t seem to sit still”) and CBTS Item 21 (“I had
difficulty concentrating”), both of which reflect maternal
hyperarousal and cognitive dysregulation. These symptoms
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may manifest in heightened maternal vigilance or diffi-
culty in promoting infant self-soothing, thereby contributing
to fragmented infant sleep. Infant age also appeared as
a differentiating predictor for this outcome, likely reflect-
ing developmental maturation of sleep consolidation and
age-dependent thresholds used in classifying night awakening
frequency.
Research and Clinical Implications
From a research perspective, this study illustrates the value
of combining symptom-level data with advanced model-
ing approaches to move beyond correlational frameworks
and toward predictive analytics in maternal–infant health.
The identification of both composite scores and individual
symptom items as key predictors offers a granular under-
standing of how distinct psychological dimensions—such as
anhedonia, emotional detachment, and hyperarousal—may
differentially impact infant sleep regulation. These findings
advocate for future investigations that examine not only the
additive burden of MMH symptoms, but also the specific
affective and cognitive pathways through which maternal
distress shapes caregiving practices and infant behavioral
development. Because MMH and infant sleep outcomes
were assessed at the same time point, our models charac-
terize concurrent statistical associations rather than tempo-
ral or causal effects. In this context, we use the term
“prediction” to denote out-of-sample statistical prediction
within the cross-sectional dataset, not longitudinal forecast-
ing. The original analysis of this dataset by Sandoz et
al [12] examined the cross-sectional associations between
MMH symptom profiles and infant sleep outcomes using
traditional statistical methods. In contrast, the present study
focuses exclusively on evaluating the predictive perform-
ance of supervised ML models that use these MMH meas-
ures to classify infant sleep outcomes. Longitudinal studies
are particularly needed to clarify the temporal sequence
between MMH symptom fluctuations and changes in infant
sleep architecture. Moreover, item-level granularity opens
avenues for psychometric refinement of postpartum screening
instruments, enabling the development of targeted subscales
that better predict specific infant outcomes.

Integrating wearable technologies (eg, smartwatches,
sleep trackers, biosensors) could passively capture continu-
ous physiological and behavioral data from mothers and
infants, reducing reliance on retrospective self-report. When
combined with symptom-level psychological data, these rich
data streams may improve ML predictive accuracy, enable
earlier detection of risk patterns, and support more respon-
sive, personalized interventions.

From a clinical perspective, our findings are best viewed
as proof of concept for generating individualized risk scores
rather than as a ready-to-deploy screening tool. In practice,
such risk scores could be integrated into routine postpar-
tum or well-baby contacts to flag mother-infant dyads who
may benefit from closer follow-up (eg, additional monitor-
ing visits or phone check-ins), brief psychoeducation on
infant sleep and maternal self-care, targeted support around
bedtime routines and soothing strategies, or referral to

perinatal mental health services for more structured interven-
tions (such as brief CBT-based programs, parenting sup-
port groups, or trauma-focused care where indicated). The
exact decision thresholds would need to be codesigned with
clinicians and policymakers, balancing sensitivity (minimiz-
ing missed high-risk dyads) against specificity and available
resources. Our analyses therefore focus on overall discrimi-
nation metrics (eg, PR-AUC, F1) rather than on a single
“optimal” cut-off; future work should calibrate and validate
context-specific thresholds and decision rules in real-world
postpartum care pathways. In addition, findings from this
study may inform the design of preventive intervention trials.
For instance, trials could test whether tailoring interven-
tions to specific symptom clusters (eg, anhedonia-focused
therapies for mothers at risk of short infant sleep duration)
yields superior outcomes. Finally, these results highlight
the importance of interdisciplinary collaboration—integrat-
ing mental health, pediatrics, and data science—to advance
personalized, responsive, and developmentally informed
postpartum care that promotes long-term maternal and infant
well-being.
Limitations and Future Directions
Several limitations should be carefully considered when
interpreting the findings of this study.

First, the data relied entirely on maternal self-report
questionnaires, which introduces potential response and recall
biases. Mothers experiencing psychological distress may
perceive or report their infant’s sleep differently, poten-
tially inflating associations between MMH symptoms and
infant sleep disturbances due to shared method variance.
Furthermore, infant sleep during the first year is influenced
by a complex interplay of biological, environmental, and
caregiving factors. The exclusive focus on MMH, without
integrating other relevant variables such as infant tempera-
ment, feeding methods, family routines, or the home sleep
environment, limits the comprehensiveness of the predic-
tive models. Future studies should incorporate multimodal,
multi-informant data sources, including reports from partners
or caregivers and objective sleep measures such as actigraphy
or polysomnography, alongside contextual and behavioral
variables to more accurately capture the multifactorial nature
of infant sleep regulation.

Second, the analysis was limited to 409 mother-infant
dyads, all recruited from a single university hospital
in Switzerland. This relatively modest sample size and
geographically restricted setting may limit the generalizabil-
ity of the findings to broader, more diverse populations.
Sociocultural factors, health care systems, parental practices,
and support structures can vary significantly across regions
and may influence both MMH and infant sleep patterns.
Future studies should validate these predictive models using
larger, more heterogeneous samples across multiple countries
and health care settings to ensure greater external validity and
applicability of the results.

Third, the cross-sectional design limits causal inference.
Although we examine associations between MMH symptoms
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and infant sleep, we cannot determine directionality or
temporality. MMH may influence infant sleep, but the reverse
is also plausible, with persistent sleep disturbances wor-
sening maternal distress. Longitudinal studies are needed
to disentangle these bidirectional effects and to capture
trajectories of MMH and infant sleep over time.
Conclusions
This study demonstrates the feasibility and utility of applying
supervised ML models to postpartum MMH symptom
measures, together with basic maternal–infant characteristics,
to predict infant sleep outcomes—specifically nocturnal sleep

duration and night awakening frequency—during the first
year of life. The combination of high-performing models
and consistent variable importance patterns suggests that both
maternal psychological well-being (eg, depressive, anxiety,
and CB-PTSD symptoms) and non–mental-health factors
such as maternal and infant age are associated with infant
sleep patterns in this sample. By integrating scalable mental
health screening tools with predictive analytics, this approach
holds promise for early identification of at-risk dyads and for
informing targeted, preventive interventions that support both
maternal and infant health outcomes.
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