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Abstract

Background: Despite progress in childhood vaccination, many children in low- and middle-income countries, including
Ethiopia, remain unvaccinated, presenting a significant public health challenge. The Immunization Agenda 2030 (IA2030)
seeks to halve the number of unvaccinated children by identifying at-risk populations, but effective strategies are limited. This
study leverages machine learning (ML) to identify Ethiopian children aged 12-35 months who are at higher risk of being zero
dose (ZD). By analyzing demographic, socioeconomic, and health care access data, the study developed predictive models
using different algorithms. The findings aim to inform targeted interventions, ultimately improving vaccination coverage and
health outcomes.

Objective: This study aimed to develop an ML model to predict ZD children and to identify the most influential predictors of
ZD in Ethiopia.

Methods: We examined how well the predictive algorithms can characterize a child at risk of being ZD based on predictor
variables sourced from the recent National Immunization Evaluation Survey data. We applied supervised ML algorithms with
the survey datasets, which included 13,666 children aged 12-35 months. Model performance was assessed using accuracy,
area under the curve, precision, recall, and Fj-score. We applied Shapley Additive analysis to identify the most important
predictors.

Results: The Light Gradient Boosting Machine (LGBM), Random Forest, Extreme Gradient Boosting (XGBoost), and
AdaBoost classifiers effectively identified most ZD children as being at high risk. Among these, LGBM demonstrated the
best performance, achieving an accuracy of 93%, an area under the curve of 97%, a precision of 94%, and a recall of 91%.
The most significant features impacting the model included poor perception of vaccination benefits, lack of antenatal care
utilization, distance from immunization services, and absence of maternal tetanus toxoid vaccinations.

Conclusions: The developed ML models effectively predict children at risk of being ZD, with the LGBM model showing the
best performance. This model can guide targeted interventions to reduce ZD prevalence and address vaccination inequities.
Key predictors include access to immunization sites, maternal health service utilization, and perceptions of immunization
benefits. By focusing on these vulnerable groups, public health efforts can tackle disparities in vaccination coverage. Enhanc-
ing maternal care, raising caregiver awareness, and improving immunization access through outreach can significantly reduce
the number of ZD children.
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Introduction

Child immunization is a cornerstone of public health,
essential for safeguarding against life-threatening diseases
and promoting the health of future generations [1]. Glob-
ally, significant advancements have been made in immuni-
zation programs, resulting in higher coverage rates [2] and
a corresponding decline in vaccine-preventable disease [3].
However, as of 2023, approximately 14.5 million children
worldwide didn’t receive the first dose of diphtheria, tetanus,
and pertussis (DTP1) containing vaccines [4], a widely
used indicator of access to immunization services [5]. This
high number of zero-dose (ZD) children continues to be a
pressing issue, intensifying health inequalities and heighten-
ing the likelihood of vaccine-preventable disease outbreaks
[6]. These ZD children remain at high risk, creating consider-
able hurdles for public health efforts [7-9].

In a substantial portion of these ZD children, about
60% are concentrated in 10 low- and middle-income
countries, including Ethiopia. Despite notable achievements
in improving immunization coverage in Ethiopia, the country
ranks third globally for ZD children, following Nigeria and
India, accounting for 6% of the world’s total [4].

Addressing the issue of children at risk of becoming ZD
has emerged as a priority on both national and global agendas
[10]. The Immunization Agenda 2030 (IA2030), endorsed
by the World Health Assembly in November 2020, aims to
reduce the number of ZD children by ensuring that every
child is reached by 2030 [5]. However, effectively identifying
and reaching these at-risk children poses significant opera-
tional challenges, and little is known about what strategies
perform best.

Research in Ethiopia has identified various predictors of
low immunization uptake, including low education levels and
low wealth index [11-13], rural residence [12,14], limited
access to health services [15,16], lack of antenatal care
(ANC) and postnatal care (PNC) [13,15-18], home deliveries
[13-16], absence of maternal tetanus toxoid (TT) vaccination
[12,19], and poor caregiver knowledge [16]. However, there
is a lack of evidence regarding how well these factors predict
7D status specifically and which factors are most relevant for
optimal prediction.

Recent advancements in data science, coupled with
available routine immunization data, present new opportu-
nities to identify and reach at-risk children at both subna-
tional and individual levels. Developing a robust algorithm to
predict ZD children based on a set of variables could provide
a valuable foundation for tailored interventions. Machine
learning (ML) has emerged as a transformative tool in
public health research particularly suited for this task which
can capture complex relationships and interactions between
variables [20-22]. Unlike traditional statistical methods that
rely on predefined hypotheses, ML models can autonomously
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identify patterns and relationships within large datasets by
learning from data rather than making prior assumptions [20,
23,24]. This capability is particularly useful for multifactorial
issues such as immunization uptake [25].

Using rule-based ML models can uncover hidden
relationships among determinants of ZD children in large
datasets, often represented through “if-then” statements that
illustrate connections between variables [26]. This applica-
tion of ML bridges the gap between theoretical research and
practical applications, leading to advancements in the health
care field [27].

This study aims to use ML algorithms to predict which
Ethiopian children aged 12-35 months are at higher risk
of being ZD and assess the predictive capabilities of the
developed models. Findings from this study may provide
actionable insights for policy makers and immunization
program actors, informing the development of targeted
strategies to effectively identify and reach those most at-risk
children.

Methods

Study Design

The data for this study were sourced from the recent National
Immunization Evaluation Survey in Ethiopia, which provides
nationwide representation [28]. The survey included 11
regions and the 2 city administrations. A 2-stage stratified
cluster sampling technique was used to select participants.
The first stage is the enumeration areas (EAs), which served
as clusters, randomly chosen with an urban-rural stratification
approach, and the second stage is households within each
EA. Sampling frames were prepared for each region and
city administrations by the Ethiopian Statistical Services. The
number of EAs required per region and city administration
was determined based on the size within the stratum (study
regions) and proportion of the Ethiopia population living in
urban and rural areas (21.4% urban and 78.6% rural). A
total of 468 EAs were randomly selected, comprising 100
from urban areas and 368 from rural regions, resulting in a
total sample size of approximately 13,666 households with
children aged 12-35 months.

We extracted information on immunization status for
children aged 12-35 months. The vaccination status of
children was assessed using 3 sources of information:
caregiver reports, home-based vaccination cards, and
facility-based records, following World Health Organiza-
tion guidelines [29]. If a mother or a caregiver presented
an immunization card, the child’s vaccination status was
assessed from that card. In cases where the card was
unavailable, data collectors were instructed to verify the
information at the nearest health facility if the caregiver
reported that their child had been vaccinated. The mother’s
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or caregiver’s self-reports were considered only when neither
the immunization card nor the facility records were available.

Using the operational definition set by Gavi, we defined
a variable ZD status for each child, which is set to 1 if the
child did not receive the first dose of the diphtheria, TTs,
and pertussis-containing vaccine (DPT1), and set O otherwise
[30,31].

We included a set of predictor variables or features
to capture characteristics that have been associated with
ZD status (Table 1). The factors influencing the outcome
of interest are grouped into 3 groups: socioeconomic
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and demographic variables, health service utilization, and
perceptions and attitudes. The first group of socioeco-
nomic and demographic variables encompasses individual,
household, and community-level characteristics that may
affect the outcome of interest. The health service utiliza-
tion represents the access to and use of various health care
services, which can impact immunization status. The third
category focuses on the perceptions or attitudes that individu-
als or caregivers have toward the benefits of immunization.
All the 3 categories of the variables gathered during the
survey.

Table 1. The predictor variables used for analysis were extracted from the recent National Immunization Evaluation Survey in Ethiopia, 2023.

Category Description

Response/type of data

Socioeconomic and demographic factor

Residency Type of living arrangement
Region Geographic area of residence
Religion Cultural beliefs influencing health behaviors

Marital status

Mother’s or caregiver’s educational
status

Occupation of mothers or caregivers

Birth order

Wealth index

Health service utilization

ANC? follow-up

History of maternal tetanus diphtheria
vaccine

Distance to immunization site

Place of delivery

Postnatal care

Perceptions and attitudes

Mother’s or caregiver’s perceived
benefits on immunization

Trust in health care provider

Relationship status of the mother or the caregiver

Level of formal education attained

Employment status and type of work

Position of a child in relation to their siblings
within a family

Measures economic status

History of ANC visits for the index child

Previous vaccinations received

Perceived impact of distance on immunization
access

Location where the child was born

Follow-up care received after childbirth

Beliefs regarding the advantages of vaccination

The belief of mothers or caregivers on the services
provided

Categorical (urban and rural)
Nominal (eg, Afar, Amhara...)

Nominal or categorical (orthodox, Muslim,
protestant, and others)

Categorical (married and living together,
married, married but not living together, and
not in marital union)

Categorical (no, primary, secondary, and higher
education)

Nominal categorical data

Categorical (first, second, third, and fourth and
above)

Categorical (poor, middle, and rich)

Categorical (Yes/No)
Categorical (Yes/No)

2

Categorical (“big problem,” “not a problem”)

Categorical (Home/Facility)
Categorical (Yes/No)

Was Likert (categorized into poor or good)

Categorized into poor or good

4ANC: antenatal care.

Data Preprocessing and Transformation

We implemented several preprocessing steps to enhance
model performance. First, we addressed missing values in the
independent variables using the k-nearest neighbor approach.
We then transformed categorical variables into numerical
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format through one-hot encoding, which is essential for
preparing data for ML models. To standardize feature ranges,
we applied minimum-maximum scaling and mean normaliza-
tion, ensuring comparability among features (Figure 1).
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Figure 1. Data preparation and analysis steps for zero-dose children prediction. AUC: area under the curve; LGBM: Light Gradient Boosting
Machine.
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We conducted sampling weight as instance weights during the
training process for all algorithms. This was done by using
the sample_weight parameter in the model’s fitting functions,
which adjusts the influence of each observation based on its
probability of selection.

Next, we conducted a correlation analysis to identify
and remove highly correlated features, thereby reducing
multicollinearity and enhancing model robustness. Our
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correlation matrix showed a strong relation between parity
and birth order (Figure 2), leading us to compute mutual
information scores for each variable (Figure 3). This analysis
highlighted ANC utilization and TT vaccination as signifi-
cant predictors, while features such as marital status were
excluded due to their minimal information value. Conse-
quently, we retained birth order and omitted parity based on
their scores.
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Figure 2. Correlation analysis matrix for predictor variables for zero-dose children, Ethiopia, 2023. ANC: antenatal care; PNC: postnatal care; TT:

tetanus toxoid.
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Figure 3. Mutual information score of predictor variables for zero-dose children, Ethiopia, 2023. ANC: antenatal care; PNC: postnatal care.
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For dimensionality reduction, we used Forward Selection, we applied the Synthetic Minority Oversampling Technique,
Backward Elimination, and Recursive Feature Elimination which balanced the dataset from an initial skew of 82%
methods. We opted for Recursive Feature Elimination due to  majority and 18% minority to an equal distribution. This
its effectiveness in identifying the most significant predictors balancing supports the development of robust predictive
while simplifying the dataset. To address class imbalance,
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models and mitigates bias toward the majority class (Multi-
media Appendix 1).

Model Development

After the preprocessing, we split the dataset into 80% for
training and 20% for testing (Figure 1). To avoid overfitting
and underfitting, we applied 10-fold cross-validation, dividing
the data into 10-folds and using one for validation while
training on the others. The final performance is averaged
across all folds.

The outcome variable, known as the class, is a binary
variable indicating ZD status. A ZD status of 1 denotes a
ZD child, while O indicates a non-ZD child. We applied
supervised learning algorithms to develop a model from the
training data to accurately predict this outcome in the test
data.

Given the categorical nature of the outcome variable, we
used 7 classical classification algorithms: AdaBoost Classifier
[32], Logistic Regression [33], Naive Bayes, Random Forest
(RF) [34], Light Gradient Boosting Machine (LGBM) [35],
Extreme Gradient Boosting (XGBoost) [35], and Decision
Tree [36]. These models generate a predicted score between
0 and 1 for each child, which is then classified as ZD or
non-ZD based on a defined threshold. Following the initial
model comparison, hyperparametric tuning was conducted
to further optimize the performance of the best performing
algorithm using a RandomizedSearchCV with cross-valida-
tion. The search involved 100 iterations with each hyperpara-
meter combination evaluated using 5-fold cross-validation.
Finally, the performance of each model was tested before
and after balancing the dataset to choose the best predictive
model. The model comparison was carried out using the
balanced dataset.

https://pediatrics.jmir.org/2026/1/e76712
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Model Evaluation

We evaluated model performance using both train-test split
and cross-validation techniques, emphasizing both discrimi-
nation and calibration metrics to compare our classification of
ZD status against the true ZD status of each child. Discrim-
ination metrics included accuracy, precision, recall (sensitiv-
ity), F1-score, and area under the curve and area under the
receiver operating characteristic curve. Accuracy reflects the
proportion of correctly classified instances among all tested
cases [37], while precision indicates the ratio of true-pos-
itive predictions to all positive predictions [38]. Recall
measures the proportion of actual positive cases that the
model successfully identifies [39], and the F{-score provides
a balanced assessment of model performance, particularly
useful in scenarios with class imbalances. In our application,
as the objective is to assess the ability of a model to distin-
guish between positive and negative classes, area under the
curve and area under the receiver operating characteristic
curve emerged as the most critical measure, as it evaluates the
model’s ability to effectively distinguish between positive and
negative classes by analyzing the trade-off between sensitiv-
ity and specificity [40].

In addition to discrimination metrics, we performed
calibration to examine how well the predicted probabili-
ties align with actual outcomes. While a model can demon-
strate good discrimination, it may still exhibit biases in its
risk predictions [41]. Calibration is essential to ensure that
predicted probabilities accurately reflect the likelihood of
outcomes. To visualize this alignment, we used calibration
curves, which plot predicted probabilities against observed
results (Figure 4). An ideally calibrated model would form
a 45-degree diagonal line, signifying that predicted probabili-
ties correspond closely to actual outcomes [42].
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Figure 4. Calibration plot.
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Important Feature Selection

Our second objective is to identify the most important
predictors of ZD children. To achieve this, we used the
best-performing ML model to determine the key features
associated with identifying ZD cases. We used a unified
framework developed by Lundberg and Lee [43]., known
as SHAP (SHapley Additive Explanations). This approach
is based on Shapley values from cooperative game theory,
which assign a value to each feature based on its contri-
bution to the prediction, taking into account all possible
combinations of features [44]. A waterfall plot is then created
to visualize the cumulative effect of individual features on
specific predictions, illustrating how each feature influences
the final output. In addition, a beeswarm plot summarizes
the distribution of SHAP values across multiple instances,
revealing the variability and significance of feature contribu-
tions.

Rule Generation

We used rule mining techniques to uncover patterns and
relationships within our dataset. We used association rule
mining to identify correlations between features through
Apriori algorithms [45]. In addition, we applied classification
rule mining to generate rules that predict class labels, aiding
in the identification of key predictors for ZD children, and
explored sequential rule mining to capture temporal patterns
where relevant. Following the mining process, we generated
actionable insights by formulating human-readable rules that
outline conditions (antecedents) and outcomes (consequents)
[46]. We assessed the quality of these rules using metrics
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such as confidence and lift to ensure their reliability and
relevance [47].

Ethical Considerations

The research was implemented in compliance with national
and international ethical principles. The University of
Gondar has provided ethical approval (CMHSSH-UOG
IRERC/3/7/2024) to conduct this analysis. For this analy-
ses we used the existing data with primary consent. We
used deidentified data (summary data without individuals’
identity) to ensure confidentiality. We followed the interna-
tional standard of strengthening the reporting of cross-sec-
tional studies in epidemiology.

Results

Children’s and Mothers’ or Caregivers’
Characteristics

A total of 13,666 samples of children aged from 12
to 35 months were included for analysis. Nearly 57%
(7727/13,666) of the children were younger than 24-35
months. The majority (10,204/13,666, 74.7%) of the children
were from mothers or caregivers who live in rural areas.
Half (6986/13,666, 51.1%) of the children were born from
mothers who had not had formal education. More than half
(6757/12,419, 54.4%) of the children were from mothers who
had no PNC follow-up for the index children. The details are
shown in Table 2.
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Table 2. Sociodemographic and economic characteristics of mothers or caregivers of children aged 12-35 months in Ethiopia, 2023 (N=1366).

Variables Frequency Percentage
Age of the child

12-23 months 5934 435

24-35 months 7727 56.5
Place of residency

Rural 10,204 74.7

Urban 3462 253
Religion

Orthodox 4430 324

Muslim 6158 452

Protestant 2944 21.5

Others? 134 1.0
Educational status

No education 6986 51.1

Primary 3870 28.3

Secondary 1798 13.2

College and above 1012 74
Wealth status

Poor 4558 334

Middle 4566 334

Richer 4542 332
Marital status

Married and living together 12,765 934

Married but not living together 352 2.6

Not in marital union 549 40
Birth order

First 4043 29.6

Second 4830 353

Third 2639 193

Fourth and above 2154 15.8
Parity

Primipara 2499 20.1

Multipara (2-4) 6573 529

Grand multipara (5+) 3346 270
Perceived distance to health facility

Big problem 5251 384

Not big problem 8415 61.6
Perceived benefit on immunization

Poor 2502 193

Good 10471 80.7
ANCP visit

Yes 10,345 833

No 2074 16.7
Place of delivery

Home 3807 30.6

Health facility 8612 69.4
PNC*
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Variables Frequency Percentage
Yes 5662 45.6
No 6757 544

40thers: Catholic, traditional, and others.
YANC: antenatal care.
°PNC: postnatal care.

ZD Prevalence

The overall prevalence of ZD in Ethiopia was 18% (95%
CI 17.4%-18.7%). There were regional variations in the
prevalence of ZD children. The higher prevalence was

observed in Somali (38.8%), Afar (34.2%), and followed by
Oromia (22.7%), and the lowest observed in Addis Ababa
(0.8%) and Dire Dawa (5 %) (Figure 5).

Figure 5. Distribution of zero-dose children aged 12-35 months across regions in Ethiopia 2023. SNNP: Southern Nations, Nationalities, and
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Performance of the Prediction Models

Seven ML algorithms were used to predict ZD status in
Ethiopia, with the LGBM yielding the best performance
for both unbalanced and balanced datasets (Table 3). It
achieved accuracies of 89% and 93% for the unbalanced
and balanced datasets, respectively. Most models showed

improved accuracy when applied to the balanced dataset,
except for Logistic Regression and Naive Bayes. After
balancing the data, both XGBoost and LGBM reached an
accuracy of 93%. Notably, the LGBM classifier excelled in
terms of area under the curve (AUC) (98%) and sensitivity
92%).

Table 3. Model performance comparison before and after dataset balancing for predicting zero-dose children in Ethiopia, 2023.

Models and dataset Accuracy (%) AUC?* (%) Precision (%) Sensitivity F1-score
Logistic Regression
Unbalanced 88 88 77 48 59
Balanced 81 89 83 77 80
Naive Bayes
Unbalanced 85 87 59 63 61
Balanced 79 87 82 73 77
LGBM? Classifier
Unbalanced 89 88 79 53 63
Balanced 93 97 94 91 92
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Models and dataset Accuracy (%) AUC?* (%) Precision (%) Sensitivity F1-score
DTC Classifier
Unbalanced 86 75 64 51 57
Balanced 89 91 90 87 88
Random Forest Classifier
Unbalanced 87 85 70 52 61
Balanced 91 96 91 90 91
XGBoost Classifier
Unbalanced 88 87 75 52 61
Balanced 93 97 94 90 92
AdaBoost Classifier
Unbalanced 88 88 77 46 58
Balanced 88 95 89 86 87

4AUC: area under the curve.
bLGBM: Light Gradient Boosting Machine.
°DT: Decision Tree.

Overall, while all ML models performed well on both detailed in Table 3. After the hyperparameter optimization
datasets, those trained on balanced data especially XGBoost conducted, the LGBM model achieved robust performance,
and LGBM proved to be more effective in identifying ZD  with an accuracy of 924, an AUC of 97.4%, a precision of
children due to their higher recall and AUC. A comprehensive 93.2%, and a recall of 90.9%. The details are shown in Table
comparison of the ML algorithms used for ZD children is 4.

Table 4. Model performance after hyperparameter tuning for predicting zero-dose children in Ethiopia, 2023.

Model Accuracy (%) AUC? (%) Precision (%) Recall (%) F-score (%)
Logistic Regression 80.8 89.1 82.5 76.9 79.6
Naive Bayes 79.1 87.3 82 73.1 773
Random Forest 91.6 96.7 919 90.6 91.3
XGBoost 922 97.3 939 89.8 91.8
AdaBoost 89.6 96.2 90.6 87.8 89.2
LGBMP 924 974 932 90.9 92.1
Decision Tree 899 94.5 89.5 89.7 89.6

4AUC: area under the curve.
bLGBM: Light Gradient Boosting Machine.

After parameter tuning, the models were further evaluated
using 10-fold cross-validation, where XGBoost and LGBM
demonstrated comparable accuracies of 93% (Figure 6).
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Figure 6. Accuracy of models in 10-fold cross-validation after balancing the dataset for predicting zero-dose children in Ethiopia, 2023. LGBM:

Light Gradient Boosting Machine.
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After building the model by using the training dataset, the
performance of the LGBM model was evaluated by the
testing dataset. From 2181 ZD children, the model predic-
ted 1991 children correctly (true positive), and out of 2300
non-ZD children, the model predicted 2175 children correctly
(true negative). However, the model incorrectly classified
190 ZD samples as non-ZD (false positive) and 125 non-ZD
samples as ZD (false negative). The Matthews correlation
coefficient was r=0.85 and Cohen ®=0.85. Overall, the model
predicted with an accuracy of 93%, recall of 91%, F|-score of
92%, and 94% precision on test data.
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The Shapley Additive analysis identified that mother’s or
caregiver’s perception of benefit of immunization (+1.13),
with whether the distance to immunization site (+0.88),
whether the mother received ANC (+0.55), whether the
mother received TT (+0.42), and whether trust in health
providers (0.41) were the most important features followed
by place of residence (+0.35), and PNC visit (+0.25). Wealth
index, birth order, and place of delivery were the features
with low importance (Figure 7).
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Figure 7. Important features for predicting zero-dose children in Ethiopia, 2023. ANC: antenatal care; PNC: postnatal care; SHAP: SHapley Additive

Explanations.
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The waterfall chart demonstrates how various factors
influence the prediction of ZD vaccination status, starting
from a baseline expected value of (E[f(X)]=0.023) and
culminating in a final prediction of f(x)=4.655) indicating
that the child is ZD. This indicated that poor perceptions of
vaccination benefits, long distances to immunization sites,
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lack of antenatal and postnatal care visits, absence of TT
vaccination, and low trust in health care providers are
positively correlated with ZD. Conversely, being in a medium
wealth index and having a third birth order is negatively
correlated with ZD (Figure 8).

Figure 8. Waterfall plot of first observation value to predict zero-dose children in Ethiopia, 2023. ANC: antenatal care; PNC: postnatal care.

0 = Perception in benefit

fix)

1= Distance from health facility
3 = Birth order
0 = ANC visit
0 =Received TT
2 = Wealth index

2 =Religon

0 =PNC visit

' +0.13

f0|

0 =Trust in health care providers

4 other features

. +0.16
’ +0.14

EIRX)]

As shown in Figure 9, the beeswarm plot illustrates the
impact of various predictor variables on ZD status, with
distinct colors representing risk levels: red dots indicate
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high-risk values, while blue dots denote low-risk values for
the predictor variables. The feature of perception exhibits
a wide range of SHAP values, highlighting its significant
influence on the model’s predictions. A poor perception of
the benefits of vaccination notably increases the likelihood
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of a child being classified as ZD. In addition, distance from
health care facilities is strongly associated with ZD status,
where far distances correlate with a higher likelihood of being
unvaccinated. Other contributing factors include a lack of

Endehabtu et al

ANC visits, PNC visits, TT vaccination, low wealth index,
low trust in health care providers, and home delivery, all of
which contribute to the prediction of the positive class (ZD).

Figure 9. Zero-dose predictors for Light Gradient Boosting Machine model. SHAP summary plot of top predictors. ANC: antenatal care; PNC:

postnatal care; SHAP: SHapley Additive Explanations.
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Rule Generation

The rule generation process was done based on impor-
tant attributes selected by the best performing ML model
LGBM. Moving beyond individual feature importance, we
used association rule mining to identify complex, multifacto-
rial profiles of ZD children and to rigorously validate the
interactions suggested by the SHAP analysis. This generated
a set of human-interpretable “if then” rules, each valida-
ted by key metrics: support (prevalence of the rule in the
data), confidence (conditional probability of the outcome),
and lift (strength of the association above random chance).
The rule generation process was done based on important
attributes selected by the best performing ML model LGBM.
The strongest rule (rule 1: lift = 2.17, confidence = 0.90)
indicates that children whose caregivers live far from a health
facility and have a poor perception of vaccination benefits

Textbox 1. Rule generation and knowledge extraction.

have a 90% probability of being ZD, a risk 2.17 times
higher than random. Rule 2 (confidence = 0.81) shows that
combining distance with a lack of ANC and poor trust in
providers creates another high-risk pathway, while rule 5
(confidence = 0.79) highlights the potent combination of
no tetanus vaccination, no ANC, and distance. Crucially,
these rules reveal critical synergies, while SHAP identified
“distance” and “ANC” as top individual predictors, rule
mining quantified how their combination with other factors
(eg, rule 8: no ANC + Far distance, confidence 0.72)
creates a risk profile with a distinctly high probability of the
outcome. This provides programmatically actionable insights,
demonstrating that interventions must target these intersecting
barriers simultaneously rather than in isolation to effectively
reach ZD children. A total of 9 association rules were
generated, and the details of the rules are shown in Textbox 1.

##Rule## 3: Perception in benefit_Poor -> Zerodose_Yes

https://pediatrics.jmir.org/2026/1/e76712

##Rule## 1: Distance from facility_far, Perception in benefit_Poor -> Zerodose_Yes

Support: 0.10897435897435898, Lift: 2.1738917080243128, Confidence: 0.9037974683544304
##Rule## 2: Distance from facility_far, Trust in healthcare provider_Poor, Anc visit_No -> Zerodose_Yes
Support: 0.10134310134310134, Lift: 1.947695283120232, Confidence: 0.8097560975609757

Support: 0.15262515262515264, Lift: 1.9211552265274243, Confidence: 0.7987220447284347
##Rule## 4: Perception in benefit_Poor, Place Residence_rural -> Zerodose_Yes
Support: 0.10103785103785104, Lift: 1.9138215859030838, Confidence: 0.795673076923077
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##Rule## 5: Received TT_No, Distance from facility_far, Anc visit_No -> Zerodose_Yes
Support: 0.13064713064713065, Lift: 1.9099490817552491, Confidence: 0.7940630797773656
##Rule## 6: Received TT_No, Distance from facility_far, Place delivery_Home -> Zerodose_Yes
Support: 0.12606837606837606, Lift: 1.7738986784140967, Confidence: 0.7374999999999999
##Rule## 7: PNC visit_Yes, Distance from facility_far, Anc visit_No -> Zerodose_Yes

Support: 0.10073260073260074, Lift: 1.7406677486668212, Confidence: 0.7236842105263158
##Rule## 8: Distance from facility_far, Anc visit_No -> Zerodose_Yes

Support: 0.17918192918192918, Lift: 1.736658159533137, Confidence: 0.7220172201722017
##Rule## 9: Distance from facility_far, Anc visit_No, Place Residence_rural -> Zerodose_Yes
Support: 0.1108058608058608, Lift: 1.7019862431408919, Confidence: 0.7076023391812866
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Discussion

Principal Findings

Using the data from the most recent National Immunization
Evaluation Survey in Ethiopia, we applied different super-
vised machine algorithms to assess how well the models
predict whether a child is likely to be ZD and to identify
the important predictor variables. We trained and compared
7 ML classifiers on both unbalanced and balanced datasets,
using a train-test split, hyperparameter tuning, and 10-fold
cross-validation for robust evaluation. A variety of socioeco-
nomic, demographic, and health-related factors were included
to enhance the model’s predictions and facilitate important
feature selection.

Our findings demonstrate that these ML algorithms are
effective in identifying children at high risk of being ZD.
Among the 7 models tested, LGBM emerged as the top
performer, achieving an AUC of 97.4%, recall of 90.9%,
accuracy of 92.4%, precision of 93.2%, and an Fq-score
of 92.1%. These evaluation metrics underscore the model’s
strong capability in predicting ZD children. The high AUC
indicates the model’s effectiveness in distinguishing between
children who receive immunization services and those who
do not. Notably, a recall of 90.9% signifies that the model
successfully identifies 90.9% of ZD children, who are often
at greater risk for missing vaccines and vaccine-preventable
diseases.

In addition to LGBM, both XGBoost and RF algorithms
performed well, each achieving an accuracy of 92.2%
and 91.6%, respectively. These results are consistent with
previous studies that recognized XGBoost [48] and RF [49]
as top performers in similar contexts. While these metrics
indicate robust performance for critical health issues such as
immunization, it is crucial to validate the model in real-world
settings. Such testing will enhance its utility as a tool for
guiding public health initiatives aimed at increasing vacci-
nation rates and improving access to essential health care
services for unvaccinated children.

Using an ML model, health care workers can pinpoint
specific households and communities with ZD children,
allowing them to shift from broad campaigns to targeted
household visits. By leveraging the model’s insights on
local perceptions and socioeconomic barriers, they can tailor
their communication and services, such as setting up mobile
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clinics, to overcome specific challenges and efficiently use
scarce resources, ensuring that vaccines reach those most in
need.

The second objective of the study was to identify
important attributes that could predict ZD among children
aged 12-35 months. Using SHAP analysis, the study found
that perception of immunization benefit, ANC utilization,
distance from vaccination site, maternal TT vaccination
status, and trust in health providers were the most important
features to identify at-risk children for ZD.

The top predictor was poor maternal perception with a
SHAP value of 1.13 (Figure 7). This indicates that a negative
perception of mothers or caregivers increases the likelihood
of a child being ZD, likely because parental beliefs directly
influence health care decisions regarding vaccination. This
finding aligns with previous studies showing that parental
beliefs and attitudes significantly affect a child’s vaccination
status [50,51].

ANC utilization was another important feature, with a
SHAP value of 0.55, indicating that a lack of ANC is strongly
linked to a child being ZD. This finding is in line with the
previous similar studies done [48,52,53]. This could be due
to the fact that ANC visits enable mothers to access integra-
ted health services, be more likely to receive information on
immunization schedules, build trust in the health system, and
improve adherence to health services [54-56].

In addition, the study found several important predictors.
Maternal TT vaccination was a key factor; mothers who
received the TT vaccine were more likely to have their
children vaccinated, a finding consistent with studies from
Sudan and Bangladesh [57,58]. Postnatal care visit was
another important predictor. This service is likely gaining a
better understanding of vaccination importance and feed-
ing practices, thus reducing missed vaccinations [59,60]. In
addition, maternal education was an important predictor, with
uneducated mothers having a higher risk of ZD children
than those with at least a primary education, firming up the
known link between maternal literacy and vaccination rates
and primary education. This finding is in line with previous
research linking maternal literacy to vaccination completeness
[61-65]. The other finding of this study is rule mining and
generation. Using association rule mining with the Apriori
algorithm, the study uncovered strong relationships between
various socioeconomic, demographic, and health-related
factors and ZD status. Key determinants, including distance
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from health facility, perception of vaccination benefits, trust
in health care providers, ANC, place of delivery, place of
residency, and TT vaccines were the most important features
predicting ZD. Confidence levels for these findings ranged
from 71% to 90%, indicating robust associations.

Findings from association rule 1 indicated that the
probability of a child being ZD would be 90%, if and only
if the mothers or caregivers were far from the health facility
and had poor perception on immunization. This may be
because mothers or caregivers who are far from the facility
may not have access to health education directly or indi-
rectly, affecting health-seeking behavior and health service
utilization such as vaccination. The second rule also included
poor trust in health care providers and lack of ANC visits as
predictors for ZD. A child ZD would be 80% if mothers or
caregivers have trust in providers and had no ANC follow-up
for the index child.

Strengths and Limitations

This study had several strengths worth mentioning. We used
national-level survey data from 463 EAs ensuring generaliz-
ability across the country and providing a current snapshot
of the ZD situation. A key strength is that our analysis uses
various ML algorithms from the field of data science, which
significantly aids in identifying and targeting ZD children
more effectively. These advanced analytical techniques allow
us to process large datasets and uncover insights that may
not be immediately apparent through traditional methods. At
the same time, this study identified the risk factors of ZD
that may help policy makers and planners to design tailored
interventions to identify and reach the unvaccinated children.

Endehabtu et al

This study was subject to some limitations. First, although
we used national-level data, we did not include data from the
Tigray region, which is one of the administrative regions of
the country, due to security issues. Second, the study did not
include health system side predictors such as availability of
vaccination supplies and vaccines. Finally, we could not do
external validation for the modes due to the lack of real-world
data.

Conclusions

The developed ML models effectively predict children at risk
of being ZD and identify associated risk factors. Among these
models, the LGBM model demonstrated the best perform-
ance in predicting ZD children. Key features linked to ZD
status include access to immunization sites, maternal health
service utilization (such as antenatal and postnatal care, place
of delivery, and TT vaccination), and perceptions regarding
immunization.

By implementing ML models, public health interventions
can be more precisely targeted at the most vulnerable groups.
This approach may address inequities in vaccination coverage
by identifying specific sociodemographic, economic, and
health-related factors associated with ZD children. Conse-
quently, it aids in the formulation and implementation of
effective policies and strategies to improve vaccination rates.
Strengthening the continuum of care for mothers, raising
awareness among caregivers, and improving immunization
access through outreach strategies may help in reducing the
high burden of ZD children.
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