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Abstract

Background: Accurate third-trimester birth weight prediction is vital for reducing adverse outcomes, and machine learning
(ML) offers superior precision over traditional ultrasound methods.

Objective: This study aims to develop an ML model on the basis of clinical big data for accurate prediction of birth weight in
the third trimester of pregnancy, which can help reduce adverse maternal and fetal outcomes.

Methods: From January 1, 2018 to December 31, 2019, a retrospective cohort study involving 16,655 singleton live births
without congenital anomalies (>28 weeks of gestation) was conducted in a tertiary first-class hospital in Shanghai. The initial
set of data was divided into a train set for algorithm development and a test set on which the algorithm was divided in
a ratio of 4:1. We extracted maternal and neonatal delivery outcomes, as well as parental demographics, obstetric clinical
data, and sonographic fetal biometry, from electronic medical records. A total of 5 basic ML algorithms, including Ridge,
SVM, Random Forest, extreme gradient boosting (XGBoost), and Multi-Layer Perceptron, were used to develop the prediction
model, which was then averaged into an ensemble learning model. The models were compared using accuracy, mean squared
error, root mean squared error, and mean absolute error. International Peace Maternity and Child Health Hospital's Research
Ethics Committee granted ethical approval for the usage of patient information (GKLW?2021-20).

Results: Train and test sets contained a total of 13,324 and 3331 cases, respectively. From a total of 59 variables, we selected
17 variables that were readily available for the “few feature model,” which achieved high predictive power with an accuracy of
81% and significantly exceeded ultrasound formula methods. In addition, our model maintained superior performance for low
birth weight and macrosomic fetal populations.

Conclusions: Our research investigated an innovative artificial intelligence model for predicting fetal birth weight and
maximizing health care resource use. In the era of big data, our model improves maternal and fetal outcomes and promotes
precision medicine.
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Introduction

The assessment of fetal birth weight for the purpose of fetal
growth monitoring is essential in contemporary prenatal care,
as anomalies in growth are linked with negative consequen-
ces for both the mother and the fetus [1,2]. For instance,
the birth of a macrosomic fetus is associated to unfavora-
ble delivery outcomes (operative vaginal, caesarean deliv-
ery, or shoulder dystocia), trauma (maternal severe birth
canal laceration and postpartum hemorrhage, fetal clavicular
fracture, brachial plexus injury, neonatal hypoglycemia, and
birth asphyxia) [3]. Infants with low birth weight may present
a greater risk of acute or chronic hypoxia, acidemia, fetal
demise, neonatal death, neonatal morbidity, and abnormal
neurodevelopmental outcome, which are more likely to be
admitted to a neonatal intensive care unit (NICU) and to have
lifelong illnesses [4]. Consequently, precise fetal birthweight
prediction helps clinical decision-making, such as appropriate
prenatal treatments and acceptable mode of delivery selection,
which might assist to enhance pregnancy outcomes [5].

Ultrasonographic evaluation based on biometric measure-
ments and regression equations is the method of choice in
obstetrics due to its objectivity and convenience. However,
the majority of ultrasonic formulae are based on western
populations, and there are biases when applied to Chinese as
fetal birth weight after 20 weeks varies significantly by race
[6]. Predictions of macrosomia and low birth weight infants
based on estimated fetal weight are significantly less accurate
[7,8]. A meta-analysis of 29 studies reveals that the pooled
sensitivity of the Hadlock formula for fetal weight estimation
was only 0.56. (95% CI 0.49-0.62) [9]. Inaccurate estima-
tions may result in inappropriate interventions, so alternative
approaches to precision estimation are urgently required.

With more ability than traditional statistical methods of
handling complex, nonlinear, and multidimensional clinical
data, machine learning (ML) has been explored successfully
in several obstetrics domains, including gestational diabetes
mellitus (GDM) [10], preterm birth [11], and postpartum
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hemorrhage [12]. Currently, there are only a few of pub-
lished models using ML to estimate fetal birth weight before
delivery, such as Wang et al [13]. used a Random Forest
Algorithm to predict macrosomia and Gao et al [14] proposed
a fetal weight prediction model based on genetic algorithm
to improve back propagation (GA-BP) neural network.
However, their simple size was too small and the feature
parameters were insufficient; consequently, the performance
of published models was unreliable and differentially robust.

In this study, we aimed to analyze the vast clinical data
of a large cohort of pregnant women and create predictive
models for the prediction of fetal birth weight using a variety
of ML algorithms. Compared to the preexisting ultrasound
formula, our novel ML models are anticipated to achieve an
advanced result with a high degree of accuracy and offer
convenient service to both medical staff and families of
pregnant women in the future.

Methods

Study Design

This is a retrospective observational study using ML
algorithms to increase the accuracy of fetal birth weight
prediction based on real-world data. The process included
feature engineering and modeling, as depicted in Figure 1
and described in detail in this section. This project estab-
lished a simplified model suitable for maternal self-testing or
clinical staff rapid prediction and transformed this model into
a mobile application for use in clinical practice. Previously,
there existed a model suitable for medical electronic record
system with more detailed features, and the results will be
improved.

This research was reported in accordance with the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) statement. The
official TRIPOD checklist is shown in Table S1 (Multimedia
Appendix 1).
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Figure 1. The whole process of fetal birth weight prediction. SMOTE: Synthetic Minority Over-sampling Technique; SVM: support vector machine;

MLP: multilayer perceptron.
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Study Population and Data Source

International Peace Maternity and Child Health Hospital
(IPMCH), a tertiary first-class hospital in China, is the source
of the data. The following were the criteria for inclusion:
(1) gestational weeks of less than 28, (2) a singleton
pregnancy, and (3) a normal pregnancy outcome (no or
severe fetal malformations, stillbirths, or neonatal deaths).
We searched for predictors of fetal birth weight that were
repeatedly reported in studies or systematic reviews, can be
easily ascertained in different settings with various clinical
experiences, and are part of the routine examination during
pregnancy. It includes samples of 18,837 pregnant women
who gave birth between January 1, 2018 and December 31,
2019, including parental demographics, clinical characteris-
tics, ultrasound information, and laboratory tests. Concerning
the height and weight of the husband were oral reported by
pregnant women, both the reliability and filling rate were
extremely low, so we only included the age and education
level information of the husband. A total of 59 characteris-
tics, was shown in Table S2 in Multimedia Appendix 1. The
measurement data’s extreme and error values were elimina-
ted, and the categorical data were standardized and coded.

At the first prenatal visit, between 9 and 13 weeks of
gestation, we gathered parental data on the demographics,
reproductive history, and medical history. Parental age was
calculated through the date of birth and double checked
by interviews. Face-to-face interviews were used to record
maternal weight, height, parity, gravity, parental educational
level, and baseline blood pressure (diastolic blood pres-
sure [DBP] and systolic blood pressure [SBP]). Gestational
weight gain (GWG) throughout pregnancy was measured
by subtracting prepregnancy weight from the woman’s
weight at her final prenatal checkup. Gestational age was
derived from sonographic measurement of the fetal crown-
rump length or biparietal diameter. In the first trimester,
between 9 and 14 weeks of pregnancy, samples of the

https://pediatrics.jmir.org/2025/1/e59377

Modeling
Ridge

Random
forest

Ensemble

XGBoost
model

SVM

MLP

mother’s fasting lipid serum were collected in vacutainer
tubes of 10 mL and centrifuged. Triglycerides (TG), high-
density lipoprotein (HDL), low-density lipoprotein (LDL),
and total cholesterol (TC), were among the laboratory
indices. The glucose index was derived from a 75-g oral
glucose tolerance test (OGTT) between pregnancy weeks
24 and 28 —including fasting plasma glucose (FPG), 1-hour
glucose (GLU-1H), 2-hour glucose (GLU-2H), and hemo-
globin (HGB). Attending physicians with more than 5
years of obstetric ultrasound experience performed routine
sonographic evaluations of the fetal abdominal circumference
(AC), head circumference (HC), biparietal diameter (BPD),
humerus length (HL), transverse trunk diameter (TTD), femur
length (FL), amniotic fluid index (AFI), and anteroposterior
trunk diameter (APTD). Only ultrasound data within 2 weeks
before delivery were collected. Each neonate’s birthweight (in
gram) was measured routinely by registered midwives using
an electronic weighing scale within half an hour of delivery.
Those newborns with birth weights <2500 g or =4000 g
were defined as low birth weight or macrosomia, separately.
Shinozuka’s formula [15] was used to estimate fetal weight
since it has been shown to be most suitable for weighing
Asian fetuses.

y = 1.07 % BPD® 4 3.42 % APTD % TTD * FL ¢))
During the modeling process, four-fifths of the sample is
picked at random as train data, and one-fifth is used as test
data. Each model is trained on the same dataset partition.

Model Training and Validation

The Model Training and Validation process involved feature
engineering steps, including handling missing values, filtering
outliers, creating new features, selecting important features,
and balancing the dataset. Pearson correlation coefficient,
Ridge, and XGBoost methods were used for feature selec-
tion. The dataset imbalance was addressed by dividing the
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samples into categories and performing up-sampling using
the SMOTE algorithm. Ensemble learning with bagging
was used, averaging results from benchmark models, which
included Ridge, Random Forest, support vector machine
(SVM), k-nearest neighbor (KNN), and Multilayer Percep-
tron (MLP). Evaluation metrics such as relative error (RE),
absolute error (AE), mean squared error (MSE), root mean
squared error (RMSE), and mean absolute error (MAE) were
used. The process aimed to optimize the model’s accuracy in
predicting fetal birth weight.

Statistical Analyses

The classification index expressed in numbers and percen-
tages (%). The continuous data were shown as mean (SD).
Kolmogorov-Smirnov (KS) divergence were used to measure
whether there is a significant difference between 2 sets of data
distributions, a P value less than .05 was deemed significant.

Ethical Considerations

International Peace Maternity and Child Health Hospital’s
Research Ethics Committee granted ethical approval for the

Gao et al

usage of patient information (GKLW2021-20). We ascer-
tained that the International Peace Maternity and Child Health
Hospital's Ethics Committee waived informed consent since
the research was reviewed.

Results

Sample Size and Clinical Features

A total of 16,655 individuals were enrolled in our study after
application of inclusion criteria and data cleaning; 13,324
cases were included in the train dataset, and 3331 cases were
included in the test dataset (Figure 2).

Table 1 provides an outline of clinical characteristics. The
incidence of low birth weight and macrosomia did not differ
statistically between the train dataset and the test dataset (low
birth weight 1.79% vs 1.92%; P=.24; macrosomia 5.87%
vs 5.88%; P=.98). There is generally good data consistency
between the training dataset and the testing dataset (Table 1).

Figure 2. Chart illustrating patient flow in this study. SMOTE:Synthetic Minority Over-sampling Technique .
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Table 1. Clinical characteristics of the train group and test group.
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Characteristics Train set (N=13,324) Test set (N=3331) P value
Fetal birth weight categories, n (%)
Low birth weight 238 (1.79) 64 (1.92) 24
Normal weight 12304 (92.34) 3071 (92.2) 24
Macrosomia 782 (5.87) 196 (5.88) 98
Sociodemographic characteristics, mean (SD)
Preg_Days? 274.5 (8.1) 274.7 (8) 82
Gravida 1.9(1.1) 1.9(1.1) 98
Parity 1.3(0.5) 1.3(0.5) =99
pre_weightb 55.8(7.9) 55.9(8.2) 98
maternal_weight_last 70.5 (9) 70.6 (9.1) 99
GA_lastd 269.8 (8.9) 270 (9) 68
GWG* 14.7 (4.5) 147 (4.5) 72
height 161.9 (5) 1619 (5) 91
pre_BMIF 21.3(2.8) 213(2.8) 75
SBP_first 1113 (12.5) 1112 (12.5) 84
DBP_first 69.4(9.8) 69.4 (9.6) 85
GDM# 0.1(0.3) 0.2(04) 7
HDPh 0.1(0.2) 0.1(0.2) >.99
Ultrasound measurements, mean (SD)
BPD! 929 (4.1) 93 (4.1) A7
HC 317.9(13.2) 3183 (13.4) 34
FLK 682 (3.3) 68.3(3.3) 36
HL! 59.8(3.2) 59.9 (3.3) 07
AC™ 315.9(20.2) 316.8 (19.8) 16
TTD" 99.8 (7.2) 100.2 (7.1) 06
APTDO 101.7 (7.4) 101.9 (7.5) 42
days_last_ul_to_deliveryP 11.4(8.8) 11.1(8.6) 22
AFl 1263 (31.5) 125.6 (30.9) 2
Laboratory indices, mean (SD)
FPG* 42(04) 42(04) 87
GLU-1H® 7.8(1.5) 7.8 (1.6) 32
GLU-2H! 6.6 (1.4) 6.6 (1.4) 73
HBAc 5(0.3) 5(0.3) 98
HDLY 2(0.4) 1.9 (0.4) 29
LDLY 2.5(0.7) 2.6(0.7) 61
TGY 1.4(0.5) 1.4 (0.5) 51
TCX 45(0.7) 45(0.7) 67
HGBY 118.7 (11.4) 118.8 (11.6) 67

4Gestational age.

bPrepregnancy weight.

“Maternal weight at the last antenatal examination.
dGestational age at the last antenatal examination.

°*GWG: gestational weight gain.
fPrepregnancy body mass index.

8GDM: gestational diabetes mellitus.
hHDP: hypertensive disorders of pregnancy.
'BPD: biparietal diameter.

JHC:head circumference.

KEL: femur length.
HL: humerus length.
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Characteristics

Train set (N=13,324) Test set (N=3331) P value

MAC: abdominal circumference.
DTTD: transverse trunk diameter.
OATD: anteroposterior trunk diameter.

PThe number of days from the last antenatal ultrasound measurement to delivery.

4Sum of Amniotic Fluid Indices.
"Fasting plasma glucose.
$1-hour glucose.

©2-hour glucose.

YHDL.: high-density lipoprotein.
YLDL: low-density lipoprotein.
WYTG: triglycerides.

*TC: total cholesterol.

YHGB: hemoglobin

Variable Setting

Table S2 (Multimedia Appendix 1) displays 59 alter-
native variables, including sociodemographic characteris-
tics, ultrasound measurements, and laboratory indices.
In order to facilitate fetal birthweight prediction in
the real world, a number of feature selection mod-
els were used to evaluate feature significance, as
depicted in Figure 3. Due to the significance of fea-
tures and the difficulty of obtaining them in the real
world, few variables were eliminated before engineering

https://pediatrics.jmir.org/2025/1/e59377

implementation. A total of 17 variables were selected into
our “few feather model,” including “Parity,” “pre_weight,”
“maternal_weight_last,” “days_last_ul_to_delivery,” “BMI,”
“GWG, “GA,” “GWG_Inspect_Preg_Days,” “GDM,”
“BPD,” “HC,” “FL,” “HL,” “AC,” “TTD,” “APTD,” and
“AFI” (Table 2). Those variables can be verbally responded
to by pregnant women or extracted through an ultrasound
report, instead of the blood test report requiring careful
checking, which is convenient for clinical use and saves time.
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Figure 3. Feature importance on different models.
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Table 2. Meaning and value range of 17 features.
Variable Variable meaning Minimum Maximum Unit
Preg_Days Gestational age 239 295 days
Parity Parity 1 4 —a
pre_weight Prepregnancy weight 40 125 kg
maternal_weight_last Maternal weight at the last 43.6 1293 kg
antenatal examination
GA_last Gestational age at the last 86 290 days
antenatal examination
GWG Gestational weight gain -45.4 452 kg
pre_BMI Prepregnancy body mass index 14.5 39.6 kg/m2
GDM Gestational diabetes mellitus 0 1 —
BPD Biparietal diameter 53 109 mm
HC Head circumference 197 367 mm
FL Femur length 37 78 mm
HL Humerus length 4 71 mm
AC Abdominal circumference 158 381 mm
TTD Transverse trunk diameter 45 130 mm
APTD Anteroposterior trunk diameter 55 128 mm
days_last_ul_to_delivery The number of days from the last 0 113 days
antenatal ultrasound measurement
to delivery
AFI Sum of Amniotic Fluid Indices 12 333 mm

4Not available.

The Development and Performance of
Prediction Model

The basic models, with the exception of KNN, were
substantially superior to the ultrasound formula. Therefore,
KNN was omitted from the ensemble model, which was a
bagging ensemble model based on the results of the remain-
ing 5 models. Using a variety of models, including basic
models and an ensemble model, to predict fetal birthweight,
and comparing the results of these models to those calculated

Table 3. Evaluation on different models based on 17 features.

by the original ultrasound formula, while keeping only a few
essential and easily-obtained variables. The ensemble model
with 17 variables predicted fantasy performance displayed in
Table 3 with an accuracy of 81.84% (RE<10%) and 66.98%
(AE<250 g) , and the MSE, RMSE, and MAE were the lowest
when compared with other methods. (Table S3 in Multimedia
Appendix 1, and Figures 4 and 5). The results demonstrated
that the effect of the final ensemble learning is greater than
that of the ultrasound formula and other single models.

Accuracy
Model RE? (<10%) AEP (2250 g) MSE¢ RMSEY MAE® (g)
Ultrasound formula methods
Shinozuka’s formula 0.71 0.59 125,65 354 266
Machine learning methods
Ridge 0.79 0.64 76,14 276 220
XGBoost! 0.79 0.65 7597 276 218
Random Forest 0.81 0.66 72,05 268 212
SvVMme 0.79 0.64 75,99 276 220
KNN! 0.73 0.57 10,53 325 257
MLP! 0.80 0.67 77,08 278 212
Ensemble model 0.82 0.67 68,47 262 208

4RE: relative error.
YAE: absolute error.
°MSE: mean squared error.
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Accuracy

Model RE? (<10%) AEP (250 g) MSE® RMSEY MAES (g)
9RMSE: root mean squared error.

°MAE: mean absolute error.

fXGBoost: extreme gradient boosting.

ESVM: support vector machine.

DK NN: k-nearest neighbor.

IMLP: Multilayer Perceptron.
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Figure 4. Prediction scatter diagram based on 17 features (RE<10%). SVM: support vector machine; KNN: k-nearest neighbor.
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Figure 5. Prediction scatter diagram based on 17 features (AE<250 g). SVM: support vector machine; KNN: k-nearest neighbor.
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In addition, a segmented evaluation of the final prediction
results was conducted, with division values of 2500 g and
4000 g for the 3 segments. Displaying the range of 10 percent
metrics was selected. It demonstrates that the prediction
effects of various models in various weight intervals were
quite distinct. Some models performed better in the low
weight interval, such as XGBoost and Random Forest, while
others performed better in the high weight interval, such as
Ridge and SVM. In addition, the MLP performed better in
the normal weight range. The Ensemble Model combines the
benefits and drawbacks of these distinct algorithm models,
which has no serious shortcomings. The predictive effect
of our established ensemble learning method significantly
outweighs that of ultrasound. The accuracy for low birth
weight can reach 70.30% (RE<10%) and 73.44% (AE<250
g). With 81.12% (RE<10%) and 61.22% (AE<250 g), the
accuracy of macrosomia has also increased significantly
(Figures 4 and 5). Besides, during the training process,
trying to use more features (31 features) did not bring much
improvement to the results with an accuracy of 83.49% (RE
10%) and 69.71% (AE=<250 g; Table S2, and Figure Sla and
S1b in Multimedia Appendix 1). This group of controlled
experiments shows that the 17 features are considered to
be able to maintain good results, and to select easy obtain
variables is of great significance for practical use.

Discussion

Principal Findings

As a key parameter for monitoring fetal development in
utero, fetal birth weight can be used to evaluate fetal growth
trends and screen for abnormal growth. Predicting the fetal
birth weight in late gestation can effectively guide clinical
decisions and reduce adverse pregnancy outcomes, such as
increasing the survival of infants with intrauterine growth
restriction and decreasing maternal-fetal complications in
macrosomia delivery. Consequently, an accurate estimation
of the fetal birth weight is crucial. Unfortunately, it is not
possible to measure the fetal birth weight directly. Clinicians
lack confidence in the estimation of the formula fetal birth
weight at present due to the large variation in the accuracy
of estimation results obtained through abdominal palpation or
ultrasound measurement.

ML is based on clinical data, and the ML method is used
to optimize health care resource use. The established ML
algorithm model has high accuracy and is straightforward
to implement; it is a win-win project that benefits patients,
hospitals, and society; and it will have a major impact on the
future of reproductive health.

In this study, data on pregnant women, including
outpatient prenatal visits and hospital deliveries, was
subjected to necessary feature processing and imbalanced
data handling. A total of 5 ML methods were used as
basic models for modeling through ensemble learning, which
effectively balances the prediction effects of all models
on fetuses in different weight ranges, achieving promising
performance in predicting the different birth weights of
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newborns (low weight infants, normal weight infants, and
macrosomia infants). The defining characteristic of ensem-
ble learning is “Learn from the best.” First, it prevents
underfitting by combining all the weaker learners and
obtaining superior models through collective intelligence (in
this case, like expert consultation, more complex learning
models are obtained from advice from experts in different
fields). Second, the integrated model prevents over-fitting:
by combining all the results, it is simple to develop a more
moderate model, thus avoiding some extreme case. Although
it is not the best in all weight estimation ranges, the overall
effect is the best, reducing the likelihood of large errors in a
particular weight range.

In this study, the maternal sociodemographic characteris-
tics and sonomicrometry data were inputs, and the predic-
ted fetal birthweights were outputs of machine learning
algorithms. Age, parity, mode of conception, education,
prepregnancy weight and BMI, weight gain during preg-
nancy, gestational age, and GDM were the sociodemo-
graphic variables of the mothers. These variables are readily
accessible in clinical practice and do not involve specific,
difficult-to-obtain clinical indicators such as blood glucose,
lipids, and protein levels, etc. In published prediction models,
the input indicators usually include data such as uterine height
[16] and pelvic measurements [13], which are subjective and
prone to risk of bias.

Ultrasound as a direct method for measuring fetal
size contributes significantly to the estimated fetal weight.
Sonography is a time-saving, non-painful, and radiation-free
tool that is widely used in obstetrics. In the third trimes-
ter, term-pregnant women in Shanghai undergo more than
2 or 3 ultrasound examinations. In our model, all ultraso-
nographic input data come from a reliable and accurate
ultrasound report. In our model, we accounted for the
time between the acquisition of ultrasound data and mater-
nal delivery outcomes, which may have contributed to the
model’s accuracy. However, Lu et al [16] and Shigemi et al
[17] abandoned ultrasound data to benefit pregnant women
in clinical practice, considering limited medical resources,
whereas, at the expense of lower accuracy (the accuracy of
Lu’s model is only 64.3%). Ultrasonography has become the
most common auxiliary examination in obstetrics because
of its security. In the vast majority of patient populations,
ultrasound data need not be discarded. Our predictive model
maximizes the clinical use of ultrasound and has significant
implications for antenatal monitoring, antenatal assessment,
intrapartum decision-making, and postpartum care. On the
contrary, Ye et al [18] established an ensemble model, only
used ultrasonographic measurements based on 26 differ-
ent empirical ultrasonographic formulas. The risk factors
associated with macrosomia were not collected thoroughly;
therefore, the model did not provide the greatest benefits.

Compared with previously published predicted models,
our model predicts fetal birth weight ranges with greater
precision. Gao et al [14] adopted back propagation neural
network model with the accuracy rate of 76.3%. Another
previously published model reveals that the genetic algo-
rithm-optimized neural network model’s accuracy is 74.9%
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[19]. In addition, 1 study found that the accuracy of predic-
tion was only around 80% among GDM pregnant women
[20]. Both low birth weight (2500 grams) and macrosomia
(=4000grams) are major public health concerns. In contrast
to ultrasound’s poor performance in estimating extreme fetal
weight, our model not only has excellent predictive perform-
ance in normal weight, but also in estimating extreme fetal
weight. Although numerous studies have been conducted in
the field of predicting extreme body weight, many prediction
models consist only of simple binary variables (“Yes or No”)
and do not provide quantitative results [13,21-23]. In our
model, the evaluation metrics for accuracy were based on
predicting birth weight within +10% or +250g, which are two
of the most commonly used metrics in the existing literature.
For larger birth weights, the £250g metric may better reflect
the accuracy of the model, while for smaller birth weights, the
+10% metric is more appropriate for assessing the model’s
precision. In our study results, the ensemble learning model
demonstrated satisfactory predictive performance in both the
<250 g and >4000 g subgroups. In contrast, other models
exhibited better predictive ability in only one of the extreme
weight categories. Our model’s accurate estimation of fetal
birth weight values will improve clinical decision-making and
have significant clinical application value.

In order to turning our ML model into practice, we
transformed the simple optimization model into a mobile
application with a visual page to provide pregnant women,
obstetricians, and midwives with a real-time, efficient method
for fetal birthweight estimation (Figure S2 in Multimedia
Appendix 1). In the future, with the purpose of improving
the accuracy of fetal weight estimation, we will embed the
original model into the doctor’s medical record workstation
so that it can cover more variables and retrieve the relevant
data automatically.

Gao et al

Limitations

This model is primarily designed for monitoring the fetal
growth trend in the third trimester, not the second. The
subsequent research can further expand the data set (including
the first and second trimesters) in order to optimize the ML
algorithm for estimating the fetal weight at various gestational
ages.

Fetal birthweight is also closely associated with genetic
predisposition. In our study, we lack the husband or partner’s
more relevant information, such as weight, height, and weight
gain during pregnancy. Provided it is possible, we can also
obtain the parental birth weight. For further study, we can
invite the husband or partner to join our first interview for
more details.

Conclusions

Assessment of the fetal birth weight in late-pregnant women
before delivery presents numerous challenges, but also
presents an opportunity for the advancement of ML in
the obstetric field. In our study, 5 fundamental algorithms
(Ridge, SVM, Random Forest, XGBoost, and Multi-Layer
Perceptron) and an ensemble learning model were investiga-
ted to determine the algorithm with the best performance
in fetal birth weight prediction. As anticipated, ensemble
learning performed the best and was chosen to create a
mobile application for pregnant women and obstetric staff.
We believe our model will promote precision medicine and
improve the quality and efficiency of maternal and fetal
health care, despite the need for additional experiments.
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