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Abstract

Background: Length measurement in young children younger than 18 months is important for monitoring growth and
development. Accurate length measurement requires proper equipment, standardized methods, and trained personnel. In addition,
length measurement requires young children’s cooperation, making it particularly challenging during infancy and toddlerhood.

Objective: This study aimed to develop a length artificial intelligence (LAI) algorithm to aid users in determining recumbent
length conveniently from smartphone images and explore its performance and suitability for personal and clinical use.

Methods: This proof-of-concept study in healthy children (aged 0-18 months) was performed at KK Women’s and Children’s
Hospital, Singapore, from November 2021 to March 2022. Smartphone images were taken by parents and investigators. Standardized
length-board measurements were taken by trained investigators. Performance was evaluated by comparing the tool’s image-based
length estimations with length-board measurements (bias [mean error, mean difference between measured and predicted length];
absolute error [magnitude of error]). Prediction performance was evaluated on an individual-image basis and participant-averaged
basis. User experience was collected through questionnaires.

Results: A total of 215 participants (median age 4.4, IQR 1.9-9.7 months) were included. The tool produced a length prediction
for 99.4% (2211/2224) of photos analyzed. The mean absolute error was 2.47 cm for individual image predictions and 1.77 cm
for participant-averaged predictions. Investigators and parents reported no difficulties in capturing the required photos for most
participants (182/215, 84.7% participants and 144/200, 72% participants, respectively).

Conclusions: The LAI algorithm is an accessible and novel way of estimating children’s length from smartphone images without
the need for specialized equipment or trained personnel. The LAI algorithm’s current performance and ease of use suggest its
potential for use by parents or caregivers with an accuracy approaching what is typically achieved in general clinics or community
health settings. The results show that the algorithm is acceptable for use in a personal setting, serving as a proof of concept for
use in clinical settings.

Trial Registration: ClinicalTrials.gov NCT05079776; https://clinicaltrials.gov/ct2/show/NCT05079776
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Introduction

Regular and accurate measurement of anthropometric parameters
in young children is important for monitoring growth and
development, and for facilitating timely interventions to ensure
appropriate growth [1,2]. Body length measurements are
required for two key World Health Organization (WHO) growth
standards: (1) length for age and (2) weight for length [3].
Accurate length measurement requires specialized equipment
(a properly calibrated length board), skilled personnel, and a
cooperative child [4-7]. Studies have reported inaccuracy and
variability of length measurements, even in clinical settings
[5,6,8,9]. In practice, achieving the “gold-standard” level of
accuracy with the standard method is very challenging for
untrained or inexperienced personnel. Although parents and
caregivers want to track their children’s growth closely, many
find measuring their child’s length at home technically
challenging. Thus, there is an unmet need to develop a tool that
is easy to use and addresses the key obstacles in taking accurate
length measurements. This can potentially be upscaled and
deployed in both personal or home and clinical environments.

Mobile devices are increasingly used for fast and efficient
collection of real-world data, especially through smartphone
images. Advances in artificial intelligence and computer vision
technology, particularly deep learning, have enabled complex
image recognition and prediction tasks to be performed on such
image data [10-14]. These include challenging tasks such as
predicting the physical size of a 3D object from one or more
2D images, which could translate to clinical use in determining
a person’s anthropometric measurements. Most of the existing
image-based approaches focus on predicting the standing height
of adults [15,16], although a couple of approaches for predicting
the recumbent length of young children have been proposed
[17,18]. Unlike manual measurements, these automated
image-based approaches do not rely on standardized positioning
of the child’s body but must overcome certain challenges to
produce accurate predictions. The relevant body parts must be
automatically identified within the image by locating key
landmarks such as the head and limb joints. The length
prediction method must also account for body parts having
variable orientation and distance from the camera, which affects
their apparent lengths in the image. Image artifacts, such as
blurring due to the child’s movement, must also be detected
and accounted for. One group proposed a stereoscopic vision
system that uses 2 cameras to photograph the child
simultaneously from different angles and estimates the child’s
body length based on the 2 images using the parallax principle
[17]. Another group proposed a method involving the detection
of customized round markers placed on the child’s body before
image capture. The markers allow both the detection of body
landmarks in the image and the estimation of their 3D position
relative to the camera; these are used to predict overall body

length [18]. However, neither approach fully overcomes all
current challenges with child length measurement since they
still require specialized equipment or additional manual setup.

We developed a length artificial intelligence (LAI) algorithm
to automatically predict children’s length from smartphone
images. To our knowledge, the LAI algorithm is the first
approach that does not require specialized equipment or precise
placement of body segment markers for length prediction. This
innovative approach could make it much more practical and
convenient for parents or caregivers to take regular length
measurements for their children. In this proof-of-concept study,
we examined the LAI algorithm’s performance for automated
length prediction and compared its performance with
international standards such as those from the WHO [19-21]
and measurements taken in general or community health clinic
settings [8,22]. These comparisons allowed us to assess the
feasibility of using the LAI algorithm in scenarios where
specialized equipment and skilled personnel are unavailable. In
addition, we explored users’ experience and expectations for a
digital measurement tool that could be used in home or clinic
environments.

Methods

Study Design and Participants
An exploratory, observational, cross-sectional pilot study was
conducted between November 2021 and March 2022 at KK
Women’s and Children’s Hospital, Singapore. The study was
prospectively registered at ClinicalTrials.gov (NCT05079776).

Eligible participants were children aged between 0 and 18
months whose parents (1) had a smartphone or tablet with access
to the internet, (2) were able to complete the study
questionnaires, and (3) took and uploaded images onto an online
form. Children who were unable to undergo length measurement
by the standardized technique recommended by the WHO [23]
(eg, children with structural abnormalities of the lower limbs
or orthopedic conditions such as club foot and hip dysplasia)
were excluded from the study.

The study duration was a maximum of 2 days. On day 1 (clinic
setting), investigators measured the participant’s body length
using the standardized WHO length measurement technique
[23]. They then used a smartphone to take 6 top-view photos
of the participant in a supine position. Each photo included a
standard-size reference card. On day 1 or 2 (home setting),
parents took and uploaded 6 smartphone photos of the
participant in a supine position with the reference card.
Investigators and parents were given a list of image quality
requirements and guidelines for capturing good-quality images.
Parents and investigators completed their respective user
experience questionnaires after the image upload process.
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Ethical Considerations
KK Women’s and Children’s Hospital’s independent ethics
committee approved the study before its initiation (approval
no.: 2021/2540). The study was conducted in accordance with
good clinical practice, the Declaration of Helsinki, and the local
laws and regulations of Singapore. Written informed consent
was obtained from the parent(s) of each participant before any
study-related activities were undertaken. The participants’
parent(s) received vouchers (equivalent to 30 Singapore dollars,
or US $22.32) as a token of appreciation for participating in the
study. Participant data were pseudonymized for analysis.

Study Assessments

Standardized Length Measurements
The body length of the participant was measured twice by
investigators to the nearest 0.1 cm using the standardized WHO
technique [23]. As the participants were younger than 2 years
old, measurements were taken supine by 2 investigators using
an infant length board. The average of the 2 measurements was
recorded as the participant’s body length and used as input to
the LAI algorithm. If the 2 measurements differed by more than
0.5 cm, a third measurement was taken and the average of the
three measurements was used.

User Experience Questionnaires
Customized questionnaires were used to capture user feedback
from investigators and parents on their experience with taking

suitable photos according to the study requirements and on other
items relating to using a digital measurement tool, including
expected accuracy and desirable features.

LAI Algorithm Overview
The LAI algorithm uses state-of-the-art imaging and machine
learning techniques to estimate a participant’s length from a
single image, such as a smartphone photo. The current algorithm
was designed to predict the length of children up to 18 months.
The input to the algorithm is a digital image of the participant
in a supine position and a reference object (standard size card,
85.6 mm by 54.0 mm). The first step involves extracting image
features for both the participant and the reference card (Figure
1). Landmark extraction models are used to detect landmarks
on the participant’s face and body (shoulders, hips, knees,
ankles, heels, etc) within the image. These estimate the length
of individual body segments in pixels. The card detection and
card segmentation models are used to locate the reference card
in the image and compare its pixel dimensions against its known
physical dimensions to generate a pixel per metric value. The
feature extraction step thus generates a set of quantitative
features used in the length prediction step (Figure 1). A model
incorporating these features predicts the total body length in
millimeters. The algorithm returns a predicted length value as
output only if the key feature extraction steps (body and card
features) are successful.

Figure 1. LAI algorithm overview. From an input image of a child in a supine position and a standard reference object, anthropomorphic landmarks
of the body and face are extracted, along with the detection and segmentation of the reference object (a standard size card, 85.6 mm by 54.0 mm). These
are used by the LAI algorithm to predict the length of the child. LAI: length artificial intelligence.

Image Datasets
The investigator and parent datasets consisted of all images
taken by the investigators and the parents, respectively.

Image Requirements
To maximize the number of images usable for length prediction,
photo-taking guidelines were given to investigators and parents.
This included no clothing on the head or feet (eg, cap, socks,
etc); no loose or baggy clothing to ensure that the body contour
was visible; high contrast between the background, participant,
and reference card; participant and reference card placed on the
same flat and stable surface; participant positioned not more

than 10 cm from the reference card; taking the image at an angle
of 90 degrees from the surface on which the participant and
card were placed; and participant’s legs not bent with the entire
body visible to the camera. Images that fail to meet these
requirements, such as those shown in Figure 2A-F, may fail to
generate length predictions.

Following further testing and optimization, automated flags
(warnings) were incorporated into the LAI (Figure 3). This
allows the tool to detect uploaded images that do not meet the
specified requirements and warn users that length prediction
may be unsuccessful. In total, 4 different types of warnings were
implemented.
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Figure 2. Challenges with image-based length prediction. Images that pose challenges for length prediction by the LAI algorithm include those where
(A) the camera is not positioned perpendicularly (90-degree angle) above the participant during image capture, (B) the participant and reference card
are not placed on a flat horizontal surface, (C) there is blurring or glare, (D) there are baggy clothes on participant affecting the visibility of body contour,
(E) there is low contrast of the participant with background, and (F) the face or body is not fully visible. LAI: length artificial intelligence.
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Figure 3. Schematic diagram of image flow. A total of 2490 images were collected in this study and 2224 images were analyzed. A total of 266 images
were not analyzed due to protocol deviations (resubmission of images, submission of images outside the stipulated visit window, or images that did not
meet the requirements). Of 2224 images analyzed, 2211 images produced a length prediction. The algorithm did not produce a prediction for 13 images
due to unsuccessful pose segmentation (m=7) or unsuccessful card segmentation (m=6). High-quality images refer to images that did not generate any
warnings. m (%): number and percentage of images in the specified category.

Model Training and Performance Metrics
The LAI model was trained on the set of images collected by
investigators (investigator dataset) and the investigator-generated
length measurements. As described above, a set of features was
generated, along with warnings. Only images that did not
produce warnings were used to train the model. A 5-fold
cross-validation was performed. Cross-validation is a statistical
resampling method commonly used in applied machine learning
to evaluate model performance with limited datasets [24,25].
The dataset was divided into 5 folds (subsets of data used for
model training and testing) using 3 criteria: each participant’s
images should appear in only 1-fold; similar numbers of
participants and images per fold; and similar distribution of
measured body lengths across folds. In addition, details are
provided in the Cross-Validation Procedure section in
Multimedia Appendix 1. A bagged model was used for

prediction. Hyperparameter optimization (HPO) incorporated
a random feature selection step and was implemented using a
state-of-the-art HPO framework [26]. The training was
performed using a 2-step process. In the first step, a model was
trained on all images from the investigators in the current
training fold. A subset of these images within the 90th percentile
of the training error was then selected, and the model was
retrained on these images to ensure that outliers did not affect
the training. Finally, all test images (from the investigators and
parents) without warnings within the current fold were used to
predict and calculate validation errors. The average validation
error from all folds was used to drive the HPO framework to
find the best model.

Performance metrics were calculated on a per-image and
per-participant basis. For a given image i, the body length (pi)
predicted by the trained model was compared with the
corresponding participant’s WHO-standardized length
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measurement (mi) to derive the following performance metrics:
error (Ei, cm: difference between measured and predicted length
Ei = [mi – pi]); absolute error (AEi, cm: absolute value of the
error AEi = Ei); and absolute percentage error (APEi, %: AE as

a percentage of the length measurement, ). Bias

(average of E, cm; ), mean AE (MAE; average of
AE, cm), mean APE (average of APE, %), percentages at each
AE cutoff (≤1 cm, ≤2 cm, ≤5 cm, and ≤10 cm), and percentages
at each APE cutoff (≤2%, ≤5%, ≤10%, and ≤20%) were also
calculated. Missing values due to errors, where the model did
not return a predicted length value, were counted and reported
separately. For participants with successful length predictions
based on at least 9 images, the predictions for each image were
averaged to generate a single predicted length for that
participant.

The performance of the LAI model was evaluated using 5-fold
cross-validation performed on the combined investigator +
parent datasets and investigator-generated length measurements.
To assess the LAI algorithm’s performance relative to
measurements in general clinic settings [8,22], the appropriate
performance metrics were compared with published values for
the technical error of measurement (TEM), an index commonly
used in anthropometry to assess the accuracy and reliability of
measurements [19-21].

Statistical Analysis
Due to the exploratory nature of this study, there was no formal
sample size calculation. It was estimated that a complete dataset
from 200 participants (standardized length measurements,
images taken by investigators, images taken by parents, and
completed questionnaires from investigators and parents) would
allow model performance to be adequately assessed. Assuming
a 20% dropout rate, 250 participants were planned for enrolment.

Descriptive statistics were used to summarize participant
characteristics and user experience questionnaire responses.
Continuous variables were summarized using mean, median,
and minimum and maximum values. Discrete variables were
summarized using percentages and frequencies by category,
including missing values. No statistical testing of formal
hypotheses was conducted.

Results

Characteristics of Participants and Image Data
In total, 215 participants were enrolled in the study, of whom
50.7% (n=109) were female. The mean age was 6.1 (SD 5;
range: 0.0-17.7) months and the median age was 4.4 months.
All participants completed the clinic-based data collection
procedures, and 200 participants completed both clinic-based
and home-based data collection procedures to provide a
complete dataset of length measurements, images, and
questionnaires.

A total of 2490 images were taken and uploaded (1290 images
by 8 investigators at the clinic and 1200 images by 200 parents
at home; Figure 3). Of these, 89.3% (2224/2490) of images
were analyzed, and 10.7% (266/2490) were excluded due to
image quality or protocol deviations.

Length Prediction Performance of the LAI Algorithm
The LAI produced a length prediction for 2211 (99.4%) out of
2224 images (Figure 3). In total, 0.6% (13/2224) of images did
not produce a prediction due to either unsuccessful pose
segmentation (7 images) or unsuccessful card segmentation (6
images). For the set of 1632 high-quality images (those that did
not generate any warnings; Figure 3), the bias (mean error) for
individual image predictions was minimal (0.03 cm; Table S1
in Multimedia Appendix 1). Most of the length predictions for
these individual images (1557/1632, 95.4%) were within 10%
of the measured length (Figure 4 and Table S1 in Multimedia
Appendix 1). We found that length prediction was improved
by averaging over multiple images for a participant. For 88
participants who had predictions for ≥9 images, the majority of
these averaged length predictions (71/88, 81%) were within 5%
of the measured length (Figure 4 and Table S1 in Multimedia
Appendix 1).

The overall distributions of errors for individual image
predictions and participant-averaged predictions are illustrated
in Figure 5 [8,19,20,22]. Published interobserver TEM ranges
for length measurements from the WHO Multicenter Growth
Reference Study (0.48 cm [19], 0.70 cm [20]) and general clinics
or community health settings (1.41 cm [22], 1.25-1.59 cm [8])
are indicated on the figure for comparison. The MAE for
individual image predictions was 2.47 cm, and the MAE for
participant-averaged predictions was 1.77 cm, which approaches
the TEM range reported in general clinics or community health
settings [8,22].

A quarter of the images with successful length predictions
(579/2211, 26.2%) generated at least 1 warning (Figure 3). For
this study dataset, the most common warning was improper
card segmentation. The numbers of images affected by each
type of warning are shown in Figure 3. Figure 6 illustrates the
percentages of images available for length prediction under
scenarios where different warning types are ignored, and the
corresponding MAE values. The length prediction workflow
can be adjusted to use more or less stringent settings, which
affects the number of images retained for prediction and
prediction error. Retaining fewer but higher quality images
(fewer warnings) for prediction resulted in smaller MAE values
(2.47 cm on images without any warnings); conversely, ignoring
more warning types allowed more images to be used, but led
to an increased MAE (3.39 cm using all images regardless of
warnings). Similarly, the MAE for participant-averaged
predictions decreased from 2.48 cm (n=155) to 1.77 cm (n=88)
when only high-quality images without warnings were used for
prediction (Table S1 in Multimedia Appendix 1).
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Figure 4. Scatter plot depicting length predictions made by the model versus gold-standard length measurements made by the investigators. For length
predictions on individual images, the majority fell within 10% of the participant’s measured length. For averaged length predictions (per participant,
for participants who had predictions from ≥9 images), the majority fell within 5% of the measured length. Blue circles represent predictions from all
individual images. Red squares represent averaged predictions for children who had predictions from at least 10 images. The thick black line indicates
the ideal prediction (ie, length prediction equal to the measured length). Dashed lines represent 5% and 10% deviations from the ideal prediction.

Figure 5. The overall distribution of errors (residuals) for individual image predictions (blue dots) and participant-averaged predictions made by the
model. These were presented alongside published interobserver TEMs of “gold standard” length measurements from WHO (0.48 cm and 0.70 cm) and
general clinics or community health settings (1.41 cm and 1.25-1.59 cm). The MAE of individual image predictions was 2.47 cm. When averaged, the
predictions had an MAE of 1.77 cm, which approaches the TEM range reported in general clinics. MAE: mean absolute error; TEM: technical error of
measurement; WHO: World Health Organization.
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Figure 6. A plot illustrating the percentage of images available for length prediction and the corresponding MAE under varying scenarios where
combinations of different warnings were ignored. Ignoring more warning types allowed more images to be used but yielded less accurate length
predictions. Warnings: W0, card and body overlapping; W1, incorrect card aspect ratio; W2, improper card segmentation; W3, width, and height pixel
size are too different. MAE: mean absolute error.

User Experience
In most cases, investigators and parents reported that they did
not find it difficult to capture the required images (Figure 7).

Investigators and parents rated the photo-taking process as very
easy, easy, or normal for most participants (182/215, 84.7%
participants, and 144/200, 72% participants, respectively).

Figure 7. Ease of collecting images as rated by investigators and by parents. N represents the number of participants for which the investigator or
parent provided a rating.
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User Feedback on the Use of a Digital Tool for Length
Measurement
In total, 7 (88%) of 8 investigators indicated that they would
be likely or very likely to use a digital tool that could
automatically measure a child’s length from an image, if
available for clinical use (Multimedia Appendix 2). A similar
proportion (7/8, 88% investigators) reported that they would be
likely or very likely to recommend a digital length measurement
tool to parents for home use, if available.

As for parents, most (143/196, 73% responses) were not
currently taking length measurements regularly (at least once
a month or more frequently) at home, whereas 57.1% (112/196)
never measured length at home and 16.3% (32/196) measured
less frequently than once a month (Multimedia Appendix 3).
However, 91.5% (183/200) felt that a digital tool that could
automatically predict length from an image would be useful or
very useful for them to measure their child’s length at home
(Multimedia Appendix 3), and 88.5% (177/200) indicated that
they would use such a tool at least once a month or more
frequently (Multimedia Appendix 3).

Investigators and parents were asked about the magnitude of
difference between standard clinic measurements and the length
predicted by a digital tool that they would find acceptable in
their typical use settings. For all investigators, only differences
of ≤1 cm (4/8, 50% investigators) or ≤2 cm (4/8, 50%
investigators) with respect to clinic measurements were
considered acceptable (Multimedia Appendix 4). For most
parents, differences of ≤1 cm (63/200, 31.5%) or ≤2 cm (93/200,
46.5%) were deemed acceptable, although a small proportion
of parents considered differences of up to 5 cm acceptable.

Additional Desirable Features for an Automated Growth
Measurement Tool
Apart from automated length measurement, investigators and
parents highlighted several additional features that would be
desirable in an image-based tool. Key desired features included
estimating other anthropometric measurements, such as weight,
head circumference, and growth-tracking functionality. Half of
the investigators (4/8, 50%) suggested it would be useful to
estimate other anthropometric parameters. A quarter (2/8, 25%)
of investigators indicated that having a growth-tracking function
would help detect growth abnormalities. In addition, 16%
(32/200) of parents wanted the tool to be able to estimate weight
or other anthropometric measurements. In total, 40% (80/200)
of the parents wanted to be able to track their child’s height,
length, or both over time and have these measurements presented
alongside the corresponding WHO height-for age and
length-for-age charts.

Discussion

Principal Findings
Length measurement is challenging in clinical practice,
especially among children younger than 2 years of age, where
inaccuracy and interobserver variability in length measurements
have been documented in primary care and community health
settings [5,8,27]. Without proper equipment and training, it is

impractical to expect parents and caregivers to take accurate
and reliable length measurements at home regularly. Approaches
for computer-assisted body length estimation from digital images
have been proposed but involve elaborate requirements for data
capture or procedures that may cause disturbances to the child
[17,18] and limit their real-world feasibility and applicability.
In contrast, the LAI algorithm was designed to have minimal
requirements in terms of equipment and user training: only a
smartphone and a readily available reference object
(standard-size credit card) are required for data collection.

In our study, both parents and investigators found it easy to take
the required photos for automated length estimation. Results
from this proof-of-concept study suggest that the LAI algorithm,
when trained on high-quality length measurements and image
data, can predict children’s body length with minimal systematic
error and accuracy approaching that achieved in general clinics
or community health settings. This indicates the potential for
future implementations of the LAI algorithm to make growth
monitoring more accessible to nonexpert users. The MAE for
individual image predictions was 2.47 cm, and our results
suggested that length prediction could be improved by averaging
across multiple images of a child: participant-averaged
predictions had a smaller MAE of 1.77 cm, which approaches
the published interobserver TEM range (1.25-1.59 cm) reported
in general clinics and community health settings [8,22]. Thus,
the LAI algorithm would enable parents to estimate their child’s
length using images captured using their smartphones, with
accuracy comparable to length measurements in general clinics
or community health settings. Published reports indicate that
the level of accuracy considered acceptable ranges from 0.5 cm
to 2.0 cm, depending on the clinical indication for which length
measurements are required [5,6,9,19-22,27]. For clinical growth
monitoring, the WHO Multicenter Growth Reference Study
protocols recommend interobserver differences of <0.7 cm for
length [20], and the Standardized Monitoring and Assessment
of Relief and Transitions (SMART) manual indicates an
acceptable limit of <0.5 cm for height [28]. Growth
measurement studies commonly report differences of ≤0.5 cm
for expert anthropometrists [19-21,29]. This is consistent with
the views of the study investigators, who indicated that they
considered an accuracy of within 1 cm acceptable in an expert
clinical setting.

Although smartphones greatly facilitate data collection for LAI
algorithm, it is not always possible to consistently capture
high-quality images of a child, which affects the accuracy of
predictions. Commonly encountered image quality issues include
the visibility of body landmarks obscured by clothing or limb
position (Figure 2). Within the current LAI algorithm, we
implemented a system that detects issues with uploaded images
and generates warnings that these could affect length prediction
(Table S1 in Multimedia Appendix 1). The settings can be tuned
to ignore warnings and allow more images to be used for length
prediction but at the cost of generating less accurate predictions.
We envision that future versions of the tool will be integrated
into a smartphone application that offers real-time feedback to
guide parents or caregivers in positioning the baby and the
standard-size reference object. Such feedback, including alerts
about potential image quality issues and guidance on how to
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avoid or reduce key sources of error, would help users to take
photos that are more likely to result in accurate predictions.

Other technologies, such as depth-of-field sensors available on
some consumer devices, could potentially be integrated to
further improve performance. Time-of-flight or light detection
and ranging sensors can provide depth-of-field information that
could be used with the current image-based algorithm to increase
length prediction accuracy. Relevant practical considerations
include the availability and accuracy of these technologies,
especially for smaller participants like infants.

This proof-of-concept study collected images and corresponding
length measurements and used these to explore the feasibility
of a digital tool that can be used in home environments and in
clinics to monitor growth over time. Due to the limited data
available, a cross-validation approach was adopted to maximize
the information that we could obtain about the tool’s
performance. This lack of an external validation sample may
introduce limitations such as underestimation of error when the
model is applied to new datasets, and systematic errors if the
model’s assumptions do not hold on to other datasets. Although
care was taken to ensure that the reference measurements were
as accurate as possible by using a standardized protocol (WHO
method) and trained personnel, we have not formally accounted
for the possibility of human error in the length measurements
used for training.

Findings from our study have been used to refine the tool
further, and projects to evaluate the feasibility and acceptability
of the improved version are ongoing. At present, the
proof-of-concept results suggest that the LAI algorithm’s current
performance may be compatible with personal use, such as
general growth tracking at home, as its performance approaches
that of manual length measurement in general clinics or
community health settings [8,22]. Using the LAI algorithm,
parents could record length measurements more frequently and
conveniently at home. This idea is consistent with feedback
from parents of the children in our study. Most parents reported
that they did not measure their child’s length at home; on the
other hand, they indicated that an automated measurement tool
was desirable and would be used at least monthly or more
frequently. Besides automated length measurement, parents
wanted a tool capable of estimating other anthropometric
parameters and allowing them to track their child’s growth with

reference to WHO growth charts [3]. This user feedback
provides valuable insights that can guide future development
of the tool.

Conclusion
One of the main strengths of the current LAI approach is its
simplicity and practicality for nonexpert end users. Data
collection requires no specialized equipment or training; physical
discomfort and disturbance to the child are minimized. This
innovative approach explored the feasibility of image-based
automated body length estimation that can be conveniently
performed in a wide range of environments by any user. The
potential value of such tools to nonexpert users is underscored
by the range of studies that explore the possibilities of digital
technology-assisted anthropometry [30,31]. The feedback
collected from parents and clinicians in this study will inform
future versions of the tool to better cater to the unique
requirements of different users. It should be noted that the LAI
algorithm’s performance was evaluated only using data from
healthy children (those without known growth-related
conditions). Further studies with different populations will be
needed to guide the design and optimization of the LAI
algorithm for use in more specialized clinically oriented tasks
such as monitoring for abnormal growth.

It should be noted that this was a proof-of-concept study to
demonstrate the feasibility and acceptability of the LAI tool for
estimating body length in young children (aged <18 months)
in the home and similar environments. The performance
achieved to date suggests that the current version of the LAI
algorithm would not replace the standard clinical method used
by health care professionals, but there is potential for future
development to enhance its accuracy and applicability. Although
the tool does not currently meet the requirements for highly
accurate measurement in specialist clinical applications, our
findings suggest that improving image quality is one way to
increase length prediction accuracy. Integration of other
technologies, such as depth-of-field sensors available on some
consumer devices, could be explored to further improve
performance. The current performance of the LAI algorithm,
coupled with its ease of use, suggests it has the potential to be
a feasible method of measuring a child’s length for use by
parents with accuracy approaching that of general clinic or
community health settings.
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Multimedia Appendix 2
Investigator ratings (N=8) on how likely they were to use and recommend a digital tool to measure a child’s length in a clinical
setting. N represents the number of respondents.
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Multimedia Appendix 3
Parents’ (N=200) assessment of the (A) frequency of length measurement in the home in terms of how often they currently
measure their child’s length manually at home and how often they would measure their child’s length if they had a digital tool
that could automatically measure length from an image, and (B) usefulness of such a digital tool. N represents the number of
respondents.
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Multimedia Appendix 4
Acceptable magnitude of difference between LAI-predicted length and standardized length measurement for investigators n=8)
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