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Abstract
Background: The severity of neonatal abstinence syndrome (NAS) may be assessed with the Finnegan score (FS). Since the
FS is laborious and subjective, alternative ways of assessment may improve quality of care.
Objective: In this pilot study, we examined associations between the FS and routine monitoring data obtained from the
electronic health record system.
Methods: The study included 205 neonates with NAS after intrauterine (n=23) or postnatal opioid exposure (n=182). Routine
monitoring data were analyzed at 60±10 minutes (t–1) and 120±10 minutes (t–2) before each FS assessment. Within each time
period, the mean for each variable was calculated. Readings were also normalized to individual baseline data for each patient
and parameter. Mixed effects models were used to assess the effect of different variables.
Results: Plots of vital parameters against the FS showed heavily scattered data. When controlling for several variables, the
best-performing mixed effects model displayed significant effects of individual baseline-controlled mean heart rate (estimate
0.04, 95% CI 0.02‐0.07) and arterial blood pressure (estimate 0.05, 95% CI 0.01‐0.08) at t–1 with a goodness of fit (R2m) of
0.11.
Conclusions: Routine electronic data can be extracted and analyzed for their correlation with FS data. Mixed effects models
show small but significant effects after normalizing vital parameters to individual baselines.
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Introduction
When exposure to opioids ends, neonates may develop
withdrawal symptoms [1]. Neonatal abstinence syndrome
(NAS), also referred to as neonatal opioid withdrawal
syndrome, can be subdivided into primary NAS due to
prenatal opioid abuse by (or treatment of) the mother, and
iatrogenic NAS (iNAS) when neonates are treated with
opioids. Primary NAS may develop in more than 90% of
infants after intrauterine opiate exposure [2]. Occurrence

and severity vary interindividually and are influenced by
several factors, such as prematurity [3], breastfeeding [4],
and multisubstance exposure, which results in more severe
symptoms and worse outcomes than exclusive exposure
to a single substance [5]. Though primary NAS is typi-
cally understood as abstinence from opioids, neonates can
also develop withdrawal symptoms after exposure to other
substances or medication such as tobacco [6], alcohol [7],
cocaine [8], selective serotonin reuptake inhibitors and other
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antidepressants [9], benzodiazepines [10], and a combination
of opioids and other substances [5].

Many neonatal intensive care units monitor withdrawal
symptoms using the Neonatal Narcotic Abstinence Scoring
System, also called the Finnegan score (FS), which is
composed of 32 clinical signs, each scored between 0 and
5 (maximum score 46) [11]. The FS was originally designed
to assess withdrawal in otherwise healthy-term infants from
mothers abusing opioids [11,12]. Thus, the validity of the FS
in other patients receiving neonatal intensive care is unclear,
particularly in preterm or term neonates experiencing iNAS
[11,12].

The implementation of electronic patient data management
systems (PDMSs) alongside the availability of digital data on
vital signs allows using data science algorithms to reevalu-
ate clinical scoring systems and to facilitate clinical deci-
sion-making using decision support algorithms [13]. Having
provided the first examples in adult medicine, these methods
have shown promising results in neonatology. For instance,
algorithmic analysis of heart rate characteristics is used to
generate the Heart Rate Observation score—an estimate of
the risk of developing sepsis [14]. Other approaches for
early detection of sepsis use more variables and extensive
machine learning algorithms but have not yet been validated
in prospective settings [15]. Other studies have attempted
to use data science algorithms to predict neonatal mortal-
ity [16]. Regarding opioid exposure, the PoPPI (Procedural
Pain in Premature Infants) trial assessed the possibility of
minimizing procedural pain in neonates receiving morphine
treatment [17]. These data have allowed for the successful
establishment of models predicting whether cardiorespiratory
instability occurs after morphine administration and whether
it requires intensified treatment [17,18].

Considering the subjectivity and the effort in generating
an FS, the exploration of data-driven alternative ways of
monitoring withdrawal symptoms appears necessary. In this
pilot trial, we analyzed the association between electronic
health data—mostly continuously and routinely monitored
vital parameters—and the FS as a measure of the severity of
NAS. Strong associations would allow an objective and less
laborious NAS assessment based on routinely available data.

Methods
Ethical Considerations
The institutional review board of the Charité – Universitäts-
medizin Berlin approved the study (EA2/104/21). Due to the
retrospective nature of the study, the need for patient consent
was waived.
Data Export and Inclusion and Exclusion
Criteria
Continuously and routinely monitored vital parameters were
extracted from the electronic health systems and harmonized
for further analysis.

Data were exported for all patients admitted to the clinic
between January 1, 2013, and February 1, 2022. The data
set was then refined on the basis of the following inclusion
criteria, and all calculations were later performed within the
refined data set. To include all patients with continued clinical
suspicions of withdrawal symptoms but to exclude those
with one-time-only suspicions or accidental documentation,
we performed the export by selecting patients with at least
3 documented FSs, since a pharmaceutical intervention was
usually not initiated on the basis of a single scoring result. We
cross-referenced this export selection with patients classified
as having NAS in accordance with ICD-10 (International
Statistical Classification of Diseases, Tenth Revision) criteria
for quality control purposes. We categorized patients into
subgroups of primary NAS and iNAS based on opioid
medication, history of surgery, and time after birth before
documenting the first FS for each patient.

Primary NAS was coded when at least 1 FS was docu-
mented before any opioid medication was administered,
any surgery was performed, and the patient had not yet
approached postpartum day 8. iNAS was coded when any
opioid medication was administered before the patient’s first
FS regardless of postnatal age. Patients with documented
FS who did not meet any of these criteria were excluded.
To design a sensitivity analysis, the analytic code was also
applied to total study population without exclusion due to
unclear NAS classification.
Review of Hospital Data Structure
Each variable was checked for availability within the hospital
information system (SAP/Cerner) as well as the PDMS
(COPRA) used in the neonatal wards (levels 1‐3).
Medication Data
Medications were not named consistently; hence, their names
had to be preprocessed manually. We exported all unique
medication entries from the PDMS and categorized them
manually. The complete list of medication categories is
provided in Multimedia Appendix 1.
Variables
To evaluate patients’ demographics, we recorded their sex,
gestational age at birth, birth weight, mode of delivery,
number of documented FSs, and whether a time frame
for individual baseline calculation was available and, if
so, whether data were available within this time frame for
the abovementioned vital parameters (including heart rate,
respiratory rate, peripheral oxygen saturation, and mean blood
pressure).

We calculated means for all variables listed below within
specified time periods (t–1 and t–2, see the Time Periods
section): heart rate, respiratory rate, peripheral oxygen
saturation, and blood pressure.

Additionally, we generated an individual baseline for each
patient by calculating the mean for each variable in a period
of up to 5 days before documenting the first FS, which we
defined as the relevant beginning of withdrawal (Figure 1).
When calculating the individual baseline, we excluded spacer
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periods immediately post partum to minimize effects from
postnatal adaptation and those immediately before document-
ing the first FS to minimize the effects of early-onset
withdrawal. We set this spacer period to 1 day for patients
with primary NAS and 3 days for those with iNAS (Fig-
ure 2). The sensitivity analysis was carried out with both
spacer periods for the whole collective. We introduced the

difference between this individual baseline and the mean
of the respective vital parameter within the specified period
before documenting any FS as a new variable to use as an
alternative to the mean of the vital parameters and henceforth
referred to this variable as the “baseline-controlled mean”
(Figures 1 and 2).

Figure 1. Schematic representation of the calculation of an individual baseline-controlled mean of a given vital parameter—heart rate. To reduce the
scattering of data in (A), we calculated the mean of the vital parameter for each patient (denoted with a green triangle, a blue dot, and a gray square)
during the individual baseline period (B). The definition of this period is illustrated in Figure 2. We then calculated the difference from the baseline
for each vital parameter of each patient, as shown in (C). When plotting this difference (D), we obtained individual baseline-controlled means for
vital parameters plotted on a scale around zero and with a more linear grouping of all measurements, irrespective of patient identity.
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Figure 2. Time periods for the calculation of individual baselines (timeline not to scale). We defined a period to calculate an individual baseline
for each patient of up to 5 consecutive days. After birth and before documenting the first Finnegan score, we introduced a spacer. aThe spacer has
a length of 1 day for patients with primary neonatal abstinence syndrome (NAS) and 3 days for those with iatrogenic NAS. bFor all measurements
within this period, we calculated a mean that is used to baseline-control measurements during every t–1 and t–2 for the respective patient; this
baseline-control approach is illustrated in Figure 1.

Finnegan score 1 Finnegan score 2

Body temperature was assessed in variable patterns, and
we calculated the mean and baseline-controlled mean body
temperature within 1 day before documenting each FS and
used these data for both time periods (t–1 and t–2).

Furthermore, we included the following variables. (1)
The pharmacodynamics of buprenorphine—the first-line
pharmacotherapy for NAS—is highly complex, and data on
transferability to neonates are limited [19,20]. Hence, we
did not attempt to estimate pharmacodynamics in neonates
but considered the time between the last documented opioid
medication and each FS instead. As these hours since
medication can only be recorded for patients who have been
administered any opioids before documenting the respective

FS, either because of iNAS or because of treatment of any
type of NAS, we used the date of birth as the date of the
last opioid medication for infants with primary NAS if no
opioid medication was documented more recently. (2) The
last body weight measure before documenting each FS was
considered as a percentage of the individual’s birth weight.
(3) The current gestational age at each FS documentation was
recorded.
Time Periods
All graphs and models were created for 2 time periods.
With the goal of exploring options for predicting withdrawal
symptoms, we focused on time periods before each FS. The
first time period, t–1, was set to 1 hour±10 minutes before
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each FS, resulting in a 20-minute period from 10 minutes
before until 10 minutes after the time point of 1 hour prior
of each FS documentation. The second time period was set in
the same manner to 2 hours±10 minutes before the respective
FS, resulting in an earlier time period, t–2. The time periods
are visualized in Figure 2.
Data Analysis Software
Data analysis was carried out using RStudio (version
2022.07.1+554) and R (version 4.2.1; 2022-06-23 ucrt)
[21,22] using the following packages and their depend-
encies in addition to the function included in R, RStu-
dio, and the ::base-package R during data extraction and
harmonization: cli [23], data.table [24], dplyr [25], lubridate
[26], tibble [27], and tidyverse [28].

We used the consort package to generate Figure 3 [29].
Table 1 was created using the tableone package; significance
was tested using chi-square tests for categorical variables,
Wilcoxon tests for skewed variables and t tests for normally
distributed metric variables [30]. Skewness was assessed
using the summary-function from tableone in accordance
with tableone documentation [30]. We generated graphs with
ggplot2 [31] and fitted our mixed effects models using lme4
[32]. Goodness of fit parameters of the mixed effects models
was calculated using MuMIn [33]. Table output from RStudio
was facilitated using flextable [34]. All code is has been
published previously [35].

Figure 3. Patient allocation and numbers. NAS: neonatal abstinence syndrome.

(n=29,699) 

No documented Finnegan score (n=28,882) 

less than 3 documented Finnegan scores (n=173) 

Finnegan scores for analysis (n=312) Finnegan scores for analysis (n=7067) 

Table 1. Patient characteristicsa.
Characteristics Total Primary NASb Iatrogenic NAS P value
Participants, n 205 23 182 N/Ac

Sex, n (%) >.99d

Female 72 (49.7) 8 (47.1) 64 (50.0)
Male 73 (50.3) 9 (52.9) 64 (50.0)

Median gestational age at birth in weeks (IQR) 37+1 (32+4 to 39+1) 38+4 (37+1.75 to 40+1.5) 37+0 (31+5 to 39+1) .02e

Birth weight (g), median (IQR) 2663 (1758-3243) 3140 (2583-3366) 2585 (1695-3200) .01e

Mode of delivery, n (%) <.001
d

Cesarean section 114 (55.6) 3 (13.0) 111 (61.0)
Vaginal delivery 74 (36.1) 19 (82.6) 55 (30.2)
Data not available 17 (8.3) 1 (4.3) 16 (8.8)
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Characteristics Total Primary NASb Iatrogenic NAS P value
Median number of documented Finnegan scores
(IQR)

23 (10-47) 7 (5-14) 26 (12-50.75) <.001
e

Time frame for individual baseline, n (%) .004
d

Definable 172 (83.9) 14 (60.9) 158 (86.8)
Not definable 33 (16.1) 9 (39.1) 24 (13.2)

Individual baseline data for heart rate, n (%) .005

d

Available 166 (81.0) 14 (60.9) 152 (83.5)
Not availablef 6 (2.9) 0 (0) 6 (3.3)

Individual baseline data for respiratory rate, n (%) .005

d

Available 164 (80.0) 14 (60.9) 150 (82.4)
Not availablef 8 (3.9) 0 (0) 8 (4.4)

Individual baseline data for peripheral oxygen saturation, n (%) .005

d

Available 165 (80.5) 14 (60.9) 151 (83.0)
Not available

f
7 (3.4) 0 (0) 7 (3.8)

Individual baseline data for mean blood pressure, n (%) .004

d

Available 162 (79.0) 14 (60.9) 148 (81.3)
Not available

f
10 (4.9) 0 (0) 10 (5.5)

aAll values rounded to integers except for pH.
bNAS: neonatal abstinence syndrome.
cN/A: not applicable.
dCategorial variables were assessed using the chi-square-test.
eMetric variables were assessed using the Wilcoxon–Mann-Whitney U test.
fNumber of patients, for which a time interval for individual baseline calculation was definable but no data for the respective vital parameters were
available within this interval.

Graphs
We visualized data availability in a clustered bar plot,
reporting the number of data points per variable available for
each patient within each period (Figure 4). By computing 2
statistical measures for each of the 4 vital parameter variables
in each of the 2 time periods, we obtained a total of 16 graphs
(see Multimedia Appendix 1). To visualize data distribution,

we generated heat map plots. The color of each tile is set
by the number of data points weighted by the number of
measurements generating the data point so that data points
based on more observations contribute more to the color
scale. Hence, 2 data points based on 1 observation each and
1 data point based on 2 observations both result in the same
color of the respective tile.
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Figure 4. Distribution of data frequency within the time periods per variable. The y-axis is scaled logarithmically; the x-axis shows the groups of
frequencies, starting with 0, corresponding to Finnegan scores for which there are no data points for the respective variables within the respective
time period. All variables show counts within clusters 0 and 1‐4. Within clusters 5‐9, only counts for heart rate and blood pressure are available in
both time periods.

Number of heart rate measurements in the 
t-1 period
Number of heart rate measurements in the 
t-2 period
Number of mean arterial blood pressure 
measurements in the t-1 period
Number of mean arterial blood pressure 
measurements in the t-2 period
Number of peripheral oxygen saturation 
measurements in the t-1 period
Number of peripheral oxygen saturation 
measurements in the t-2 period
Number of respiratory rate measurements 
in the t-1 period
Number of respiratory rate measurements 
in the t-2 period

Counts within the time period (grouped)

Mixed Effects Models
We developed several mixed effects models. The models
were fitted to descriptively analyze the relationship between
the FS and vital parameters as well as NAS type, the time
elapsed since the last opioid medication, gestational age, and
the percentage of birth weight reached by the most recent
body weight measurement. We controlled for interindividual
differences by including the patient identifier as the random
effect. We generally selected one set of vital parameter
variables mixing neither means or individual baseline-control-
led means nor the time periods of different vital parameters
within a single mixed effects model. The models were not
fitted to predict the FS; therefore, neither cross-validation
nor bootstrapping were applicable. The regression equation
for the full model was as follows, where “mean” could be
substituted with “baseline-controlled mean” and “t–1” with
“t–2” throughout the equation:

Value of Finnegan-Score~Intercept + Mean heart rate
in the t–1 period + Mean peripheral oxygen saturation
in the t–1 period + Mean respiratory rate in the t–1
period + Mean of the mean arterial blood pressure in
the t–1 period + Mean body temperature within 1 day
before documenting the FS + Hours between the last
medication as specified and documentation of the FS +
Percentage of birth weight + Gestational age + NAS
type + (1 / patient identifier)

We evaluated the goodness of fit again for models with
a simplified set of variables, excluding variables with small

effects (estimates of <0.05) and high degree of missingness
(>30% missing values). Goodness of fit was determined using
the Akaike information criteria (AIC), Bayesian information
criteria (BIC), and R2m and R2c and is listed in Multimedia
Appendix 1.

For the sensitivity analysis, we excluded the NAS-type
variable from the full model. The model’s results and
goodness-of-fit data from the sensitivity analysis can be found
in Multimedia Appendix 2.

Results
Patient Characteristics and Data
Composition
Patient demographic data are provided in Table 1, and patient
allocation is demonstrated in Figure 3. Out of 205 neonates
with NAS, 78 (38%) had been ICD-10–coded. Abstinence
after intrauterine exposure (P96.1) was coded in 17.4% (n=4)
of patients who were classified as having primary NAS and
5.5% (n=10) of patients who were classified as having iNAS.
Abstinence after therapeutic exposition (P96.2) was coded
in 21.7% (n=5) and 34.6% (n=63) of the respective patient
groups. We obtained 7050 FS data points and calculated the
baseline-controlled mean for up to 166 (81%) infants (Table
1). Two reasons prevented us from doing so in the other
cases: no definable time period (as illustrated in Figure 2) or
no data points within the time period to calculate upon.
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Visual Interpretation
As shown in Figure 4, heart rate measurements showed the
highest data density and mean blood pressure measurements
showed the lowest. Heart rate measurements were the only
variable for which at least 5 data points within a time period
were commonly available, the only other variable being mean
arterial blood pressure in very rare instances.

The plots show a widely distributed pattern for mean
and baseline-controlled mean heart rate (Figure 5) and mean
arterial blood pressure (Figure 6), each plotted against the
FS. The tile color and different ranges shown in the color
legends illustrate differences in the density of data available

for heart rate and mean arterial blood pressure measurements;
this corresponds to the data density described above and is
shown in Figure 4. While there was no direct relationship
between the FS and the respective parameters visible, the
graphs for the baseline-controlled version of each parameter
showed a narrower spectrum on the x-axis. In particular,
the baseline-controlled blood pressure shows a discernible
trend of greater-than-zero values, indicating a rise in blood
pressure in neonates in comparison with that before with-
drawal assessment. However, this rise in baseline-controlled
blood pressure does not clearly increase with an increase in
the FS.

Figure 5. Heat maps of mean heart rate and baseline-controlled mean difference in heart rate during the t–1 time period (60±10 minutes before
documenting the Finnegan score [FS]), values of children with iatrogenic neonatal abstinence syndrome. Left: the x-axis shows the mean heart rate
in beats per minute (bpm); right: the x-axis shows the baseline-controlled mean difference in heart rate in bpm. Each tile has a width of 2 bpm and a
height of 1 FS point; the opacity is generated from the amount of data points within the area of the respective tile weighted by the number of heart
rate observations that each of those data points is calculated from.

Figure 6. Heat maps of mean and baseline-controlled mean arterial blood pressure during the t–1 period (60±10 minutes before documenting the
Finnegan score [FS]) for children with iatrogenic neonatal abstinence syndrome. Left: the x-axis shows the mean arterial blood pressure in mm Hg;
right: the x-axis shows the baseline-controlled mean arterial blood pressure in mm Hg. Each tile has a width of 2 mm Hg and a height of 1 FS point;
the opacity is generated from the amount of data points within the area of the respective tile weighted by the number of mean arterial blood pressure
observations that each of those data points is calculated from.

Regression Analysis of Vital Parameters
in Fitted Models
Estimates for vital parameters stayed either positive or
negative across all fitted models and varied only in the

corresponding SEs, CIs, and P values. Among all models,
the model containing all variables, using the later time period
of t–1 and the baseline-controlled mean as the statistical
measure, yielded the highest R2c and R2m and second-low-
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est AIC and BIC (Table 2). This model was fitted on 357
observations obtained from 84 infants.

Table 2. Results of the mixed model using baseline-controlled means as statistical measures, t–1 as time period, and a complete set of variables
(R2m=0.11; R2c=0.43; Akaike information criterion=1999.36; Bayesian information criterion=2045.89; 84 patients; 357 Finnegan scores).
Parameters Estimate SE 95% CI P

value
(Intercept) 9.31 2.88 3.51 to 14.92 .002
Individual baseline-controlled heart rate in the t–1 period 0.04 0.01 0.02 to 0.07 <.001
Individual baseline-controlled peripheral oxygen saturation in the t–1 period –0.09 0.05 –0.19 to 0.01 .09
Individual baseline-controlled respiratory rate in the t–1 period 0.00 0.01 –0.02 to 0.03 .84
Individual baseline-controlled mean arterial blood pressure in the t–1 period 0.05 0.02 0.01 to 0.08 .005
Individual baseline-controlled body temperature within 1 day before documenting
the Finnegan score

0.33 0.49 –0.63 to 1.28 .51

Hours between last medication as specified and Finnegan score 0.00 0.00 0.00 to 0.00 .46
Percentage of birth weight 0.00 0.00 –0.01 to 0.00 .19
Gestational age –0.06 0.06 –0.18, to 0.06 .35
Iatrogenic (vs primary) neonatal abstinence syndrome –0.27 1.64 –3.41 to 2.92 .87

An increasing individual baseline-controlled heart rate
(estimate 0.04, 95% CI 0.02 to 0.07) and an increasing arterial
blood pressure (estimate 0.05, 95% CI 0.01-0.08) correlated
significantly with an increased FS.

Furthermore, a decreasing individual baseline-controlled
peripheral oxygen saturation (estimate –0.09, 95% CI −0.19
to 0.01), decreasing gestational age (estimate −0.06, 95%
CI −0.18 to 0.06) as well as increasing individual baseline-
controlled respiratory rate (estimate 0.00, 95% CI −0.02 to
0.03), increasing hours since the last medication (estimate
0.00, 95% CI 0.00-0.00), increasing baseline-controlled body
temperature (estimate 0.33, 95% CI −0.63 to 1.28), increasing
percentage of birth weight (estimate 0.00, 95% CI −0.01
to 0.00), and the status of iatrogenic (vs primary) NAS
(estimate −0.27, 95% CI −3.41 to 2.92) were associated with
an increasing FS. However, while the inclusion of these
variables improved the goodness of fit of the model, the
estimates showed SEs and 95% CIs too large to be considered
significant.

The irregularity and scarcity of blood pressure measure-
ments in neonatal standard care resulted in missing values
for the individual baseline-controlled mean arterial blood
pressure and thereby reduced the amount of complete data
on which the model could be fitted. Due to the large number
of missing values (mean blood pressure unavailable for >90%
of FS), imputation was not applicable. When blood pressure
was not included—thereby reducing the complexity of the
model but increasing the number of complete observations—
all measures for goodness of fit decreased (worst model with
blood pressure [R2m=0.08, AIC=2345]; best model without
blood pressure [R2m=0.07, AIC=25,992]). On excluding the
NAS type from our sensitivity analysis, these results were
confirmed. Including previously excluded patients and using
spacer periods of the same length for all patients during
baseline calculation resulted in similar results (Multimedia
Appendix 2).

The abovementioned estimated effects are small and may
seem clinically irrelevant. However, due to the nomenclature
of mixed effects models, the estimates refer to 1-unit changes
of the respective variable. This implies that a heart rate
increase of 10 beats per minute from the individual baseline
would coincide with an FS increase of 0.4 and a 10-mm Hg
increase (increase of 0.6) in the mean arterial blood pressure
assuming that all other values remained constant.

Discussion
This pilot study shows a measurable association between
withdrawal assessment based on FS and heart rate and blood
pressure, which underlies heavy scatter and is only revealed
when controlling for several other influencing variables in
regression analysis. The unfiltered correlation between FS
values and vital parameters was weak, and the analysis
revealed heavily scattered data. Thus, we fitted mixed effects
models that corrected for various variables. These models
supported the hypothesis that opioid withdrawal measured by
FS is associated with vital parameter readings if big data sets
are considered. Multiple analyses revealed robust estimates
with a small magnitude for the association of increasing FS
with an increased heart rate and arterial blood pressure (Table
2) but not with the respiratory rate. However, even in the
model exhibiting the best goodness of fit (R2m=0.11; Table
2), this association was found to be weak, likely because
of heavily scattered input data. Notably, our analysis only
revealed an association with the FS, which, while being the
currently and widely used assessment tool for withdrawal,
can only be understood as a resemblance of the latter, not
withdrawal itself.

The use of electronic monitoring data and health records
may become an attractive source for clinical decision-mak-
ing (eg, for identifying the risk of sepsis) or multivariable
predictive models (eg, for neurodevelopmental impairment)
in neonatology [36-39]. While more conservative models
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perform similarly on the task of predicting sepsis in neo-
nates, advanced machine learning techniques exhibit better
performance in case of heterogenous big data pipelines [40].

Conceptually, it is appealing to develop such a big data–
based prediction strategy, particularly if it can be valida-
ted by using a clinical scoring system. Since opioid with-
drawal symptoms considered in the FS rely on the accuracy
of reporting, detecting, and describing symptoms, adding
monitoring or laboratory data might improve subsequent
clinical decisions. However, items in the FS may be too
complex per se for fitting common models of analyzing big
data from electronic health records. In this regard, the density
of electronic monitoring data, such as arterial blood pressure,
was surprisingly low in our cohort. Other easily accessible
data such as intrauterine growth restriction and maternal
tobacco or multisubstance abuse also failed to sufficiently
predict NAS severity in previous studies [41]. Success in
using continuously monitored electronic data for decision-
making in care of neonatal opioid withdrawal, however, may
critically depend on the granularity of these data. At our
institution, the heart rate may have been recorded with very
low data granularity, for example (Figure 4), as these readings
were previously summarized to means for storage capacity
reasons. This is not unusual as hospital systems regularly do
not save the highest available data frequency to reduce the
required data storage space, all the while limiting its use for
research at later stages [40]. Thus, we applied specific periods
(t–1 and t–2; Figures 1 and 2) and identified an individual
baseline of vital parameters to compile data with varying
temporal resolution. Of note, temporal cross-correlation of
vital parameters might have resulted in an improvement in
predictive values on the severity of FS, as previously shown
in other cohorts of preterm infants with sepsis, necrotizing
enterocolitis, or retinopathy [38,42,43].

To date, our data did not offer sufficient temporal
resolution to cross-correlate vital parameter data strings.
However, based on the most the recent study by Poppe et
al [38], we suggest that continuously logged electronic data
sampled preferentially at 1 Hz should be obtained. For model

development, such high-frequency data may also be obtained
during prospective trials. For model validation, real-world
data are required at a later stage. High temporal resolution
also allows models to reach high levels of goodness of fit and
significance with the use of relatively basic sets of varia-
bles, as demonstrated for both instability and requirement
of treatment after morphine analgesia based on documented
episodes of apnea, profound oxygen desaturation, the average
heart and respiratory rates, and the postmenstrual age [18].
While our models based on our limited temporal resolution
data did not show significant effects of changes in the
respiratory rate, the addition of respiratory signals to heart
rate characteristics also improved the performance of sepsis
prediction models. The resulting model features an especially
strong negative predictive value, and we suggest validating
this model with larger cohorts [44]. Further research is
necessary to not only validate the effects we observed in other
cohorts but also analyze associations between high-frequency
data and withdrawal, potentially using measures obtainable
within these data, such as heart rate characteristics and
variations. Most recently, our institution has begun to archive
vital parameter data in real time and with high resolution,
enabling us to pursue this path.

Our data do not allow considering the different (substance
or dose) pharmacologic interventions for neonatal opioid
withdrawal and variations in the half-life of such substances
when computing the time elapsed since the last administration
and the next FS. The complex metabolism of buprenorphine
in neonates [19,20] may also affect the analytical mixed
models’ performance and be relevant for strategies using
artificial intelligence for future clinical decision-making.

Despite these limitations, the discrepancy between the
FS and data from electronic monitoring may also reflect an
inherent weakness of the clinical score. Since the FS has been
reported to be subjective, resulting in low interrater reliabil-
ity, our study indirectly supports the “Eat, Sleep, Console”
approach for neonatal opioid withdrawal as successfully
shown in the recent cluster-randomized controlled trial of the
ACT NOW Collaborative [45].
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