
Original Paper

Classifying Autism From Crowdsourced Semistructured Speech
Recordings: Machine Learning Model Comparison Study

Nathan A Chi1; Peter Washington2, BA, MSc; Aaron Kline1, BS; Arman Husic1, BSc; Cathy Hou3; Chloe He4, BS;

Kaitlyn Dunlap1, BA; Dennis P Wall1,4,5, PhD
1Division of Systems Medicine, Department of Pediatrics, Stanford University, Palo Alto, CA, United States
2Department of Bioengineering, Stanford University, Stanford, CA, United States
3Department of Computer Science, Stanford University, Stanford, CA, United States
4Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
5Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States

Corresponding Author:
Dennis P Wall, PhD
Division of Systems Medicine
Department of Pediatrics
Stanford University
3145 Porter Drive
Palo Alto, CA, 94304
United States
Phone: 1 650 666 7676
Email: dpwall@stanford.edu

Abstract

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in altered behavior, social
development, and communication patterns. In recent years, autism prevalence has tripled, with 1 in 44 children now affected.
Given that traditional diagnosis is a lengthy, labor-intensive process that requires the work of trained physicians, significant
attention has been given to developing systems that automatically detect autism. We work toward this goal by analyzing audio
data, as prosody abnormalities are a signal of autism, with affected children displaying speech idiosyncrasies such as echolalia,
monotonous intonation, atypical pitch, and irregular linguistic stress patterns.

Objective: We aimed to test the ability for machine learning approaches to aid in detection of autism in self-recorded speech
audio captured from children with ASD and neurotypical (NT) children in their home environments.

Methods: We considered three methods to detect autism in child speech: (1) random forests trained on extracted audio features
(including Mel-frequency cepstral coefficients); (2) convolutional neural networks trained on spectrograms; and (3) fine-tuned
wav2vec 2.0—a state-of-the-art transformer-based speech recognition model. We trained our classifiers on our novel data set of
cellphone-recorded child speech audio curated from the Guess What? mobile game, an app designed to crowdsource videos of
children with ASD and NT children in a natural home environment.

Results: The random forest classifier achieved 70% accuracy, the fine-tuned wav2vec 2.0 model achieved 77% accuracy, and
the convolutional neural network achieved 79% accuracy when classifying children’s audio as either ASD or NT. We used 5-fold
cross-validation to evaluate model performance.

Conclusions: Our models were able to predict autism status when trained on a varied selection of home audio clips with
inconsistent recording qualities, which may be more representative of real-world conditions. The results demonstrate that machine
learning methods offer promise in detecting autism automatically from speech without specialized equipment.

(JMIR Pediatr Parent 2022;5(2):e35406) doi: 10.2196/35406
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Introduction

Autism spectrum disorder (ASD, or autism) encompasses a
spectrum of disorders characterized by delayed linguistic
development, social interaction deficits, and behavioral
impairments [1]. Autism prevalence has rapidly increased in
recent years: according to the Centers for Disease Control and
Prevention, autism rates have tripled since 2000 to 1 in 44
children in 2018 [2]. In the United States alone, over 5 million
individuals are affected [3], and nearly 75 million are affected
worldwide. Despite the increasing prevalence of autism, access
to diagnostic resources continues to be limited, with 83.86% of
all American counties not having any [4]. These nationwide
inadequacies in autism resources are compounded by the lengthy
nature of diagnosis. On average, the delay from the time of first
consultations with health care providers to the time of diagnosis
is over 2 years. Such extensive delays often cause diagnosis at
a later age (usually ≥4 years old) [5], which may result in greater
lifelong impacts, including a higher likelihood of psychotropic
medication use, lower IQ scores, and reduced language aptitude
[6,7]. Given that timely autism identification and intervention
has been shown to improve treatment success and social
capabilities, research has focused on its early detection [7-11].

Although symptoms vary across individuals, prosody
abnormalities are among the most notable signs of autism, with
multiple studies suggesting that affected children display
peculiarities including echolalia, monotonous intonation, and
atypical pitch and linguistic stress patterns [12-14]. Given this,
an effective artificial intelligence sound classifier trained to
detect speech abnormalities common in children with autism
would be a valuable tool to aid autism diagnostic processes.

Prior research [15,16] investigated prosodic disorders in children
with autism to varying degrees of success. Cho et al [17]
developed models that achieved 76% accuracy on a dataset of
recorded interviews between children and unfamiliar adults,
trained on data recorded at a consistent location using a
specialized biosensor device with 4 directional microphones.
Similarly, Li et al [18] achieved high accuracies when training
on speech data recorded with multiple wireless microphones,
providing high purity recordings at a central recording location
(a hospital). However, both used data collected in centralized,
unfamiliar locations with high-quality recording equipment.
Such research, while promising, does not accelerate the process
of autism detection because it requires the use of specialized
equipment and centralized recording locations to provide

consistent audio quality, posing significant barriers to the
widespread availability of automatic diagnosis tools.
Additionally, interacting with unknown adults in foreign
environments could be stressful and possibly affect the behavior
of children with autism, thus leading to observations that are
not generalizable to the real world.

In this work, we propose a machine learning–based approach
to predict signs of autism directly from self-recorded
semistructured home audio clips recording a child’s natural
behavior. We use random forests, convolutional neural networks
(CNNs), and fine-tuned wav2vec 2.0 models to identify
differences in speech between children with autism and
neurotypical (NT) controls. One strength of our approach is that
our models are trained on mobile device audio recordings of
varying audio quality. Therefore, unlike other studies, our
approach does not necessitate specialized high-fidelity recording
equipment. Additionally, we attempt to capture naturalistic
speech patterns by recording children playing educational games
with their parents in a low-stress home environment. Finally,
our approach does not require a trained clinician to converse
with the child. To our knowledge, our method is the first to
aurally detect symptoms of autism in an unstructured home
environment without the use of specialized audio recording
devices.

Methods

Data Acquisition

Process
We obtained audio data of NT children and children with autism
in a home environment through Guess What?, a mobile game
designed for prosocial play and interaction at home between 2-
to 8-year-old developing children and their parents [19-23]
(Figure 1, “Guess What? Audio Data”). During a game session,
parents and children choose either a charades game (acting out
emotions, characters, sports, chores, or objects) or a simple quiz
game (identifying colors, shapes, numbers, and word spellings).
Children are directed to follow the rules of gameplay, while
parents serve as game mediators. Throughout the session,
parents record their children by placing their smartphones on
their foreheads with the front-facing camera oriented toward
the child. After each 90-second session, parents are given the
option to view their child’s game session video recording and
share it with our research team.
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Figure 1. Overview of audio-based AI detection pipeline. First, the educational video game Guess What? crowdsources the recording of videos of NT
children and children with ASD from consenting participants. Audio of children's speech is manually spliced from the videos and 3 models are trained
on this audio data. The first is a random forest classifier, which uses an ensemble of independently trained decision trees. The second is a CNN. The
third is a fine-tuned wav2vec 2.0 model. Model 1 takes commonly used speech recognition features as input, model 2 learns from spectrograms of the
audio, and model 3 takes the raw audio data itself as input. AI: artificial intelligence; ASD: autism spectrum disorder; CNN: convolutional neural
network; NT: neurotypical.

Distribution of Demographics
We collected a total of 77 videos of 58 children participating
in gameplay, recorded in the span of 4 years from 2018 to 2021.
The participants ranged in age from 3-12 years old and included
20 children with ASD (19 male and 1 female) and 38 NT
children (15 male, 22 female, and 1 unspecified). The median
age of the children with ASD was 5 years; the median age of
the NT children was 9.5 years. Parents involved in the study
consented to sharing their videos with our research team and
provided their child’s age, sex, and diagnosis.

Advantages
This pipeline offers several benefits over traditional diagnostic
workflows. Since only a smartphone is necessary, more children
can be assessed for autism than through in-lab procedures, with
lower costs of time and health care resource use. Through Guess
What?, a traditionally time-intensive health care process for
diagnosis could potentially be transformed into a quick and
enjoyable process. Furthermore, children recorded at home may
be more likely to behave in a naturalistic manner.

Data Preprocessing
Home videos are naturally variable in quality; their data contains
a number of irregularities that must be addressed prior to
analysis. In particular, parents or children would often join in
gameplay simultaneously, resulting in a variety of voices,
sometimes overlapping with one another. This overlap of voices
can complicate the isolation and extraction of the child’s voice.
In order to remove adult speech, we manually sampled only
child speech from each video, ensuring that each resulting clip
did not include any voice other than the child’s. Each child
contributed a mean of 1.32 videos and 14.7 clips, resulting in
a total data set size of 850 audio clips, representing 425 ASD
and 425 NT clips. The 850 clips were split into 5 folds, as shown
in Table 1, in preparation for 5-fold cross-validation. When
creating the folds, we included the restriction that all clips
spliced from a given child’s video had to be included in the
same fold to prevent models from learning from child-specific
recording idiosyncrasies, including environmental background
noise and audio quality.

Table 1. Distribution of 850 audio clips across 5 folds. Each of the 3 models was trained on the same distribution of clips with 5-fold cross-validation.

Fold 4Fold 3Fold 2Fold 1Fold 0Group

8783818787Neurotypical

8783818787Autism spectrum disorder

Classifiers
We investigated 3 machine learning methods to predict autism
from audio, each represented in Figure 1.

Random Forest
We trained random forests on a set of audio features
(Mel-frequency cepstral coefficients, chroma features, root mean
square, spectral centroids, spectral bandwidths, spectral rolloff,
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and zero-crossing rates) typically used in traditional signal
processing speech recognition. We also tried training other
models (including logistic regression, Gaussian Naive Bayes,
and AdaBoosting models), which did not perform as well. We
implemented the random forest model in scikit-learn and used
the following manually chosen hyperparameters:
maxdepth=20,000, nestimators=56, maxfeatures=15, minsamples split=10,
minsamples leaf=20, minweight fraction leaf=0.1.

CNN Model
We trained a CNN using spectrograms of our data as input
[24,25]. Our spectrograms were synthesized via the Python

package Librosa. Figure 2 shows an example of the
spectrograms used to train the CNN. The CNN, represented in
Figure 3, consists of 9 layers each with alternating convolution
and max pooling layers, as well as 3 dense layers with a L2
regularization penalty of 0.01. We investigated both training a
small CNN (~8 million parameters) from scratch and fine-tuning
the image recognition model Inception v3 (with ~33 million
parameters) trained on ImageNet [26]. However, our CNN
model with 8 million parameters ultimately performed slightly
better than the transfer learning approach, likely due to the
irrelevance of ImageNet features to spectrograms. Our final
CNN model, which we train for 15 epochs (until training
performance stopped improving), has 8,724,594 parameters.

Figure 2. Mel-frequency spectrogram for a neurotypical child speech segment, spliced from a Guess What? gameplay video. This spectrogram was
one of 850 used to train the convolutional neural network model with 8 million parameters, which yielded the highest accuracy of the 3 best-performing
models.
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Figure 3. (A) and (B) represent the same 8M CNN model architecture. This architecture performed best out of all of our tested architectures, including
a fine-tuned Inception v3 model. (B) was in part created with the Python package Visualkeras. 8M CNN: convolutional neural network with 8 million
parameters.

Wav2vec 2.0
We fine-tuned wav2vec 2.0, a state-of-the-art transformer model
pretrained on a self-supervised audio denoising task [27].
Although wav2vec 2.0 is typically used for speech-to-text
decoding, prior work [28] has demonstrated its utility for
suprasegmental tasks such as emotion prediction. We used the
facebook/wav2vec2-base variant and fine-tuned for 264 steps.
The final model has 95 million parameters.

Summary
For each method, we trained and evaluated using 5-fold
cross-validation. We ensured that clips from a child are
maintained in one fold to prevent the model from artificially
performing better by learning user recording idiosyncrasies (eg,
background noise). For each fold, we saved the weights for the
highest performing model after training and reported mean
accuracy (with threshold 0.5), precision, recall, F1 score, and
area under the receiver operating characteristic curve (AUROC),
averaged over the 5 folds.

Results

Of our models, the best-performing model was the CNN model
with 8 million parameters, achieving 79.3% accuracy, 80.4%
precision, 79.3% recall, 79.0% F1 score, and a mean AUROC
score of 0.822 (Table 2). Our wav2vec 2.0 model performed
comparably with our best CNN, achieving 76.9% accuracy,
78.2% precision, 74.6% recall, and 76.8% F1 score, and a mean
AUROC score of 0.815. On the other hand, our highest
performing lightweight machine learning model (random forest)
performed somewhat worse than the other 2 models, with 69.7%
accuracy, 68.7% precision, 74.4% recall, 69.4% F1 score, and
a mean AUROC score of 0.740.

Our receiver operating characteristic (ROC) curves for the top
3 highest performing models of each category are included in
Figure 4, panels A, C, and E. In each figure, ROC curves for
each individual fold and the mean curve are reported. One point
of interest is that each figure has variation in area under the
curve (AUC) values between folds to some degree. Moreover,
these variation trends are similar between models: for instance,
each model appears to perform well on fold 2 while performing
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relatively poorly on fold 3. This suggests that the data in each
fold may be too limited, resulting in folds that have differences
in content that cause varying model performance from fold to
fold. This disparity between AUC values is the greatest in Figure
4A, perhaps explainable by the random forest classifier’s small
size and lightweight traits. The wav2vec model (Figure 4E) has
the most unvarying results, implying that it is better at
consistently performing well at classifying unseen data than
either of the other two models. This is expected, given that the

wav2vec model contains far more parameters than either of the
other two models and is more robust.

In Figure 4, panels B, D, and F, we provide confusion matrices
for all 3 highest performing models. Figure 4D and Figure 4F
show that both the CNN and wav2vec models have relatively
few false positive predictions, while Figure 4B shows that the
random forest classifier has a relatively large number of false
positive predictions. All models have similar false negative
prediction rates.

Table 2. Performances on Guess What? data set. Results are reported with standard deviation over 5 different runs for each model.

AUROCa, mean
(SD)

F1 score, mean (SD)Recall, mean (SD)Precision, mean
(SD)

Accuracy, mean
(SD)

Model

0.740 (0.09)0.694 (0.013)0.744 (0.247)0.687 (0.010)0.697 (0.013)Random forest

0.822 (0.010)0.790 (0.014)0.793 (0.014)0.804 (0.014)0.793 (0.013)Convolutional neural network

0.815 (0.077)0.768 (0.006)0.746 (0.031)0.782 (0.021)0.769 (0.005)Wav2vec 2.0

aAUROC: area under the receiver operating characteristic curve.

Figure 4. (A) ROC curve for random forest model. (B) Confusion matrix for random forest model. (C) ROC curve for 8M CNN. (D) Confusion matrix
for CNN. (E) ROC curve for wav2vec 2.0 model. (F) Confusion matrix for wav2vec 2.0 model. All models were tested and trained on the Guess What?
audio data set, composed of child speech segments taken from educational gameplay videos. 8M CNN: convolutional neural network with 8 million
parameters; ASD: autism spectrum disorder; AUC: area under the curve; NT: neurotypical; ROC: receiver operating characteristic.
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Discussion

Principal Results
We trained multiple models to detect autism from our novel
data set of audio recordings curated from the educational video
game Guess What? We presented a set of systems that classify
audio recordings by autism status and demonstrated that both
CNNs and state-of-the-art speech recognition models are capable
of attaining robust performance on this task, with lightweight
statistical classifiers still achieving reasonable results.

Privacy
One consideration for any recorded audio medical diagnosis is
privacy [29-31], which is particularly important for studies
involving commonly stigmatized disorders like autism [32].
We note that since our proposed models are relatively
lightweight, they could feasibly be deployed at home on mobile
devices, allowing for private offline symptom detection as well
as privacy-preserving federated learning approaches [33]. Prior
work investigated using federated learning techniques to
preserve privacy while boosting model performance on a
functional magnetic resonance imaging classifier task; a similar
framework might be feasible for autism diagnosis, affording a
greater degree of privacy for parents who wish for a diagnostic
signal but hesitate to share videos with strangers [34].

Limitations
One limitation of our approach is the relative imbalances in the
gender distribution of children who comprised our speech data
set. Our data set included a split between 95% males with ASD
and 5% females with ASD for autistic speech segments, as well
as a 39% NT male, 58% NT female, and 3% NT unknown
gender split for NT speech segments. Our data set had a sizable
imbalance in terms of the relative proportion of males and
females with ASD represented. Although some imbalance is to
be expected due to the naturally skewed autism sex ratio, our
imbalance was larger than the observed real-world 4:1 to 3:1
male-to-female incidence ratio, which would result in a data set
containing an 80%-75% male and 20%-25% female split for
ASD segments [35,36]. Therefore, despite being closer to
replicating actual conditions than prior work, our data set may
still not be completely representative of real-world conditions.
Additionally, while we require parents to disclose their child’s
clinical diagnosis by choosing from options not widely known
to those who have not received a clinical evaluation, these labels
are self-reported and thus unverified.

Another limitation of our work is that we evaluated on a
relatively small data set. Additionally, manually splicing videos

to isolate child voices is a time-intensive process that may not
be scalable to larger data sets. The alternative—automatically
isolating voices through blind signal separation—is an
exceptionally challenging task [37,38]. However, it poses a
potential area of interest and is possibly a necessary hurdle to
overcome to develop widely available and consistently effective
autism machine learning diagnosis resources.

Future Work
One strength of our approach is the relatively small amount of
data required to train the model. Our models were trained on
clips spliced from a total of 115.5 minutes of audio yet still
yielded relatively accurate results, implying that training on
more data may improve performance.

Therefore, future directions include testing our models’
performance with additional data from a wider selection of both
children with autism and NT children. One particular area of
interest may be wearable devices such as Google Glass [39,40];
previous work [41-44] investigated delivering actionable,
unobtrusive social cues through wearables. Such approaches
have been demonstrated to improve socialization among children
with ASD [10,45], suggesting that they could also be used to
collect naturalistic data similar to this experiment in an
unobtrusive way.

Another area of interest for future work may be examining the
possibility of leveraging a distributed workforce of humans for
extracting audio-related features to bolster detection accuracy.
Previous work examined the use of crowdsourced annotations
for autism, indicating that similar approaches could perhaps be
applied through audio [31,46-51]. Audio feature extraction
combined with other autism classifiers could be used to create
an explainable diagnostic system [52-64] fit for mobile devices
[60]. Previous work investigated using such classifiers to detect
autism or approach autism-related tasks like identifying emotion
to improve socialization skills; combining computer
vision–based quantification of relevant areas of interest,
including hand stimming [58], upper limb movement [63], and
eye contact [62,64], could possibly result in interpretable
models.

Conclusions
Use of automatic audio classification could help to accelerate
and improve the accuracy and objectivity of the lengthy
diagnosis process for autism. Our models were able to predict
autism status by training on a varied selection of home audio
clips with inconsistent recording quality, which may be more
representative of real-world conditions. Overall, our work
suggests a promising future for at-home detection of ASD.
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