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Abstract

Background: Television viewing among children is associated with developmental and health outcomes, yet measurement
techniques for television viewing are prone to errors, biases, or both.

Objective: This study aims to develop a system to objectively and passively measure children’s television viewing time.

Methods: The Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) system includes three sequential
algorithms applied to video data collected in front of a television screen: face detection, face verification, and gaze estimation.
A total of 21 families of diverse race and ethnicity were enrolled in 1 of 4 design studies to train the algorithms and provide proof
of concept testing for the integrated FLASH-TV system. Video data were collected from each family in a laboratory mimicking
a living room or in the child’s home. Staff coded the video data for the target child as the gold standard. The accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value were calculated for each algorithm, as compared with the
gold standard. Prevalence and biased adjusted κ scores and an intraclass correlation using a generalized linear mixed model
compared FLASH-TV’s estimation of television viewing duration to the gold standard.

Results: FLASH-TV demonstrated high sensitivity for detecting faces (95.5%-97.9%) and performed well on face verification
when the child’s gaze was on the television. Each of the metrics for estimating the child’s gaze on the screen was moderate to
good (range: 55.1% negative predictive value to 91.2% specificity). When combining the 3 sequential steps, FLASH-TV estimation
of the child’s screen viewing was overall good, with an intraclass correlation for an overall time watching television of 0.725
across conditions.

Conclusions: FLASH-TV offers a critical step forward in improving the assessment of children’s television viewing.

(JMIR Pediatr Parent 2022;5(1):e33569) doi: 10.2196/33569
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Introduction

Television Viewing and Other Screen Use Among
Youth
The American Academy of Pediatrics Council on
Communications and Media has reported that children spend
more time using screen media (television, movies, smartphones,
tablets, computers, etc) than time in school [1]. Data from the
Kaiser Family Foundation for the United States found children
aged 8-18 years spend about 7.5 hours using screen media on
a typical day, with some of the screen exposure involving
multitasking several screens [2]. Nationally representative data
of US children in 2020 found that children aged 5 to 8 years
use an average of 3 hours and 5 minutes of screen media daily
[3]. The types of screens children use have changed over the
last decade [3,4]. Web-based videos, subscription streaming
services, and television account for 73% of screen media use
by children aged <8 years [3]. Similarly, in 2015, 62% of youths
aged 9-12 years reported they watched television every day and
television viewing remained one of the media activities enjoyed
the most by tweens [5]. Television viewing therefore remains
an important component of children’s overall screen use, which
has been linked to detrimental cognitive development [6], worse
child psychosocial outcomes [7], lower school achievement [7],
child obesity [7,8], cardiometabolic risk [7], and decreased
fitness [8]. Thus, higher levels of screen media use is a public
health concern [9].

Measuring Television Viewing Among Youth
Unfortunately, current methods to assess children’s television
viewing and other screen media use remain inadequate, making
it unclear how accurate television and screen media exposure
estimates are. Tools are needed to objectively measure children’s
use of screens across screen media platforms to ultimately
inform a composite measure of screen use. New tools to track
people’s screen use on mobile devices rely on background apps
that record smartphone use [10,11] or obtain intermittent
automatic screenshots of the mobile device to record how it is
being used over a specific period [12]. Although both are
important contributions to improve the assessment of children’s
screen media use, they do not account for exposure to larger
screens, such as televisions, computers, and stationary video
game consoles. The risk of obesity differs based on the type of
screen media used by a child [13,14], highlighting the
importance of measuring all forms of screen media exposure.
Although children’s screen media use is rapidly evolving with
the use of many different devices and multiple web-based
platforms for viewing content [15], television viewing is still a
prominent behavior among youth [1,3,5,16].

The current gold standard to measure children’s screen use is
direct or video-recorded observations that allow coding of the
time a child spends watching a television screen [17-19].
Although accurate, this is too expensive and intrusive for most
research studies, especially in-home settings. Most previous

studies have relied on subjective recall by youth or their parents
to assess television viewing and screen use [2,4,11,17]. This
subjective assessment is prone to many sources of bias and
errors, resulting in low accuracy estimates [18]. The most
common method, self-reported or parent proxy-reported surveys
of television viewing behaviors [17,19], has rarely been
compared with a gold standard. Those that have, did not perform
well. Anderson et al [18] compared parent-reported television
diaries and general estimates of television viewing to the gold
standard in a child’s home over the same period. Parent
completed television diaries correlated moderately well with
coded video observations (r91=0.67-0.86; P<.001). However,
the correlation between parent estimates and coded video
observations was significantly weaker (r92=0.27; P<.01) [18].
Furthermore, there was significant sample selection bias of
families willing to participate in the study involving a high
participant burden (television diaries), biased toward White,
middle-class, and 2-parent households.

Objective automatic or passive methods for measuring children’s
television viewing and use of other large stationary screens
(computers and videogame systems) are needed to better assess
children’s typical screen viewing and use behaviors. In the
future, objective assessment of television viewing could be
added to output from assessment tools of other screen platforms,
such as mobile devices [11], for a composite measure of screen
use among children. We are therefore developing an objective
and automatic system to measure television viewing to allow a
more comprehensive and accurate assessment of children’s
television viewing to inform the assessment of screen media
exposure. This paper describes the design and development of
the resulting assessment tool, Family Level Assessment of
Screen Use in the Home-Television (FLASH-TV), and the data
acquired by the FLASH-TV system.

Methods

Ethics Approval
The Institutional Review Board at Baylor College of Medicine
reviewed and approved the study protocol (H-40556).

Overview of FLASH-TV Development
The overall goal of FLASH-TV is to estimate the total time a
target child views a television or other large screen. To achieve
this, FLASH-TV consists of a video camera (Logitech c930e
1080p) placed directly on or near the television, with the camera
facing the viewers. The video camera records high-resolution
images (approximately 1 megapixel or greater) at a rate of 15-30
frames/s. Computer vision and machine learning algorithms
analyze each frame of the recorded video. Video analysis
follows three stages: (1) face detection—to detect any faces
present in every frame of the video, (2) face verification—to
isolate and localize the presence of the target child in any frame,
and (3) gaze estimation—to determine whether the target child
is looking at the television (Figure 1).
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Figure 1. The integrated Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) system. The FLASH-TV system takes as input
video frames and processes it through a sequence of 3 steps: (1) Face detection, (2) Face verification, and (3) Gaze estimation to create a log containing
a child’s television viewing time.

Data Collection Using the FLASH-TV System
Four small, iterative design tests were conducted to obtain video
data to develop, train, and test the 3 steps required for a robust
FLASH-TV. Three of the design tests were conducted in an
observation laboratory at Baylor College of Medicine, which
was set up as a living room. One of the design tests was
conducted at the family’s home to test the system under natural
circumstances. A parent and 2 siblings (one who was identified
as the target child) were invited to participate in the task-based
protocols. Inclusion criteria for each parent–sibling triad were:
parent or legal guardian of children; target child aged 6-11 years
and sibling aged 6-14 years; family fluent in English; and
parents willing to allow their children to watch age-appropriate
television or movies and play age-appropriate digital games.
Exclusion criteria were: parent or child with developmental,
medical, mental, or physical diagnosis that would prevent him
or her from following the protocol. The research protocol was
reviewed and approved by the institutional review board at
Baylor College of Medicine with institutional review board
reciprocity by Rice University via an established authorized
agreement. All methods were performed in accordance with the
Declaration of Helsinki and according to the federal and
institutional guidelines. Informed written consent was provided
by the parents of each triad for participation in the study and
assent provided by all the children who participated. Participants
in all design studies were offered an opt-in on the consent form
to have their images used in reports and presentations that
describe the development of FLASH-TV. All parents and
children depicted in this document opted-in and additionally
provided consent for their images to be used in publications by
reviewing and signing the Baylor College of Medicine, media

release form. Of the 22 participating families, one triad’s video
data from design test 2 was corrupt. Here, we present the data
from the remaining 21 triads.

Each design test protocol lasted approximately 90 minutes and
contained minor variations. Each protocol required participants
to watch television, engage with a mobile tablet, or play with
physical toys while being video recorded by the observation
room cameras as well as the prototype FLASH-TV system.
Participants were asked to change their positions in the room
(eg, from the couch to the floor) while performing each task for
a few minutes at a time. For certain protocol segments,
participants were asked to leave the room for a short period to
ensure that FLASH-TV would detect their absence and return.
The lighting of the room was varied for some tasks during
several of the design tests to assess the robustness of FLASH-TV
under bright, dim, and dark conditions. Each protocol included
a 20- to 30-minute free-play portion to capture naturalistic
viewing of a television screen by children when toys and a
mobile device were also available. The room set up varied for
each family, including different locations of the television and
chairs in room and different room decorations. Design test 3
differed from design tests 1 and 2 as it included 2 separate,
approximately 30-minute visits, 1 week apart from the
observation laboratory so that the face verification could be
assessed with participants across days. Design test 4 was
conducted at the family’s home using a slightly modified
protocol. An example of task-based protocols is provided in
Multimedia Appendix 1.

FLASH-TV consisted of a high-definition, wide-angle video
camera (Logitech 1080p webcam running at 15-30 frames/s)
placed on top of the stationary screen (large computer monitor

JMIR Pediatr Parent 2022 | vol. 5 | iss. 1 | e33569 | p. 3https://pediatrics.jmir.org/2022/1/e33569
(page number not for citation purposes)

Vadathya et alJMIR PEDIATRICS AND PARENTING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


in the laboratory observation room or a television at the family’s
home). The FLASH-TV video data from each of the design
tests were reviewed and coded by trained behavioral research
staff to determine whether the child was watching television.
The research staff coded video data (available at the frame level)
was considered the gold standard for training and testing the
FLASH-TV machine learning algorithms. The target child was
identified in each video frame, and then coded with one of four
codes for the target child: watching screen, not watching screen,
out of frame, or cannot tell using duration coding (one code was
applied to the video data and remained until the child’s behavior
changed). Eight research staff were trained and certified to
correctly label gaze or no gaze ≥90% of the time. Overall, 10%
of each family’s video data were double coded by 2 independent
staff to determine interrater reliability (κ=0.88 with an SD 0.23
for laboratory observations; κ=0.83 with an SD 0.25 for in-home
observations).

Face Detection
YOLOv2 [20], a state-of-the-art convolutional neural network
(CNN) originally proposed for object detection, was modified
to develop the face detection component of FLASH-TV, using
a publicly available code base [21]. The modification was based
on a transfer learning paradigm in which previously learned
model information from the YOLOv2 system was refined and
adapted to the FLASH-TV context. YOLOv2 CNN was

originally trained to detect common objects (eg, cars, humans,
traffic lights, and animals), but was adapted for the FLASH-TV
face detector to extract the parents’, siblings’, and target
children’s faces from design test videos. We retained the first
16 layers of the original YOLOv2 model, whereas all the
YOLOv2 layers after layer 16 were replaced with our own
convolution and detection layers. The entire network was
retuned using large-scale public facial data sets [22-24] to refine
the FLASH-TV face detector. The FLASH-TV face detector
returned bounding boxes with the 2D spatial coordinates around
all detected faces in each video frame, as shown in the second
box from the left in Figure 1.

A receiver operating curve analysis was performed on 10,000
test frames from design test triads 1, 2, and 3, stratified
according to the task and lighting conditions to identify the
threshold for the face detector. At the selected operating point,
the false positive rate per second was 0.79, and the sensitivity
was 92.5%. The goal was to set the face detector threshold in
a range to avoid missing faces (false negatives) in exchange for
accepting higher false positives. A false positive rate of 0.79
per second could be tolerated because most of these false
positives would be screened out during the next stage of
processing (the face verification step; Figure 2). In practice,
about 96% of the false positives were screened out by face
verification, achieving an effective false positive rate of 0.03
false positive face detections per second.
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Figure 2. Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) face detection. (a) FLASH-TV face detector takes an input
frame and detects faces in the image, shown in red boxes (b) Receiver operating curve (ROC) for the face detector. The region indicated in the blue box
in the ROC is enhanced in an inset to show the selection of the operating point. At the operating point, we have 0.79 false positives per second and a
sensitivity of 92.5% to optimize false negatives.

Face Verification
The goal of FLASH-TV face verification was to determine
whether any of the detected faces corresponded to the target
child. DeepFace [25], a state-of-the-art method for face
verification, was used to learn the face-specific features for face
verification using deep neural networks with residual
connections. A publicly available implementation of this
approach from FaceNet [26,27] was trained for face verification
on a publicly available data set, VGGFace2 [28], consisting of
3.3 million faces of 9000 identities. The resulting algorithm
was tested on the Labeled Faces in the Wild test set [29]
consisting of 5749 celebrities that were divided into 6000 face
pairs, and DeepFace accuracy on this data set was 99.6%.

To compute the similarity between the face in the bounding box
(output of face detector) to the gallery of images of the target
child, the correlation among their FaceNet features was
measured. For design tests 1 and 2, approximately 33,000
randomly selected test frames were used, and for design test 3,

approximately 4000 randomly selected test frames were used.
As seen in Figure 3, the match score is closer to 1 when
comparing the faces of the target child to another image of the
target child. A match score threshold of 0.93 (identified by
receiver operating curve analysis) was used in our
implementation of FLASH-TV as it provided a reasonable
trade-off between false positives and false negatives.

Preliminary analysis of face verification performance indicated
that the low-light level with the resultant noisy image was the
principal cause of face verification errors. Therefore, we refined
the face verification model by retraining the system on a large
data set of synthetic low-light, high-noise videos (where noise
was added to existing video data to simulate low-light
conditions). Further, we exploited the continuity of face identity
across successive video frames by automatically tracking and
smoothing identity evolution across frames. FLASH-TV face
verification resulted in 93% accuracy in identifying the target
child (see Results section for details).
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Figure 3. Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) face verification. Demonstration of the FLASH-TV face
verification approach. All faces identified in the face detection step are compared with a series of images of the target child’s face obtained at the start
of the study protocol. The FLASH-TV algorithm assigns a similarity score of each face identified to an image of the target’s child’s face. At a match
score threshold of 0.932, we optimize our true positives and true negatives compared with staff coding of faces among a random sample of 6000 pairs
of faces with half pairs being similar faces. Face pairs with match scores above the threshold are considered as similar faces and below that as dissimilar
faces. We show example face pairs with match scores in the range (0.991-0.822). Actual false positives and miss detection rates were much lower but
we show several examples of each here simply for illustrative purposes.

Gaze Detection
The goal of FLASH-TV gaze detection was to determine
whether the target child was looking directly at the television
(from which we inferred attention to the television). This was
done by first detecting the target child’s eyes and then estimating
their gaze direction (in relation to the location of the television).
Prior gaze detection systems focused on estimating gaze
direction from high-resolution images of eyes recorded on
mobile phones, tablets, or laptops, where the distances were
less than a meter [30-34]. Unfortunately, the FLASH-TV gaze
detector had to work with the small facial image sizes (typically
<50×50 pixels) captured in the bounding boxes from the video

data as the subjects were farther away (2-4 m), and the camera
had to cover a large field of view. Consequently, existing trained
models for gaze estimation could not be directly used within
the FLASH-TV context.

We adapted the Gaze360 approach of Kellnhofer et al [35] for
FLASH-TV gaze estimation using a publicly available code
base [36]. Gaze360 [35] provided a direction vector specifying
the direction in which the person was looking (Figure 4). For
FLASH-TV gaze detection, a dichotomous output, whether the
child’s gaze was or was not on the television was desired. To
obtain this dichotomous output from the gaze direction, angular
limits were set on the direction of the vector, which should be
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identified as gaze, and outside, which should be no-gaze. These
angular vector limits depended on where the face was in the
frame and the relative position of the television (eg, notice the
gaze directions for different locations in the video frame shown
in Figure 4). To address this, the video frame was divided into
multiple regions, for which we identified the angular limits for
each. To account for the location of the television in the room,

we labeled each FLASH-TV data set with relative position
information between the FLASH-TV camera and the television.
For example, of the 16 triads for design tests 1, 2, and 3, we
have 10 triads with television in the center and 5 with television
in the left. One family’s data were obtained from a unique
position (below television) and could not be used in gaze
estimation training or testing.

Figure 4. Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) gaze estimation. All images identified as the target child by
the FLASH-TV face verification step in a bounding box are processed for the direction of the child’s gaze based on Gaze360 algorithms [35]. This
illustrates the resulting gaze vector (red arrow) that are classified as true positives (gaze) or true negatives (no gaze) by the system. Note, the angle of
the gaze vector that is considered a true positive (gaze) will depend on the location of the television in the foreground. The approximate television
location is indicated by a green box at the bottom of each image.
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We used the leave-one-out strategy to evaluate the Gaze360 on
FLASH-TV data. For each design test, we removed one of the
family triads as test data and used the remaining families’video
data to train the algorithm. This was repeated for each triad in
the design tests. The training data were used to obtain the
angular limits for the gaze vector, which were then applied to
the test data, resulting in a dichotomous gaze or no-gaze output.
This binary output was compared with the gold standard human
coding of the video data. Our FLASH-TV gaze detector
achieved an accuracy of 87% (see the Results section for details).

At the end of each data collection session, the parents were
asked about their perceptions of FLASH-TV using a structured
interview guide. The brief interviews were audio-recorded,

transcribed, and coded for themes by 2 trained staff members
using NVivo (version 11, QSR International; 2015).

Statistical Analysis
A summary of the algorithms used by FLASH-TV for face
detection, face verification, and gaze estimation can be found
in Table 1. For each individual step of video data processing,
FLASH-TV output was compared with the gold standard
(staff-coded video data), and the accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), false positives per second, and processing time
were calculated within each family and then averaged across
families (Table 2).

Table 1. Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) algorithms.

FPSa processingAlgorithm usedFLASH-TV methods

20Modified YoLo [20]Face detection

12FaceNet [26,27]Face verification

30Gaze360 [35,36]Gaze estimation

aFPS: frames per second.

Table 2. Outcome metrics assessed.

Interpretation in reference to gazeFormulaOutcome metric

Overall how often does FLASH-TVe make a correct prediction for gazeTPa+TNb/(TP+TN+FPc+FNd)Accuracy

High sensitivity indicates that when the child is watching television, FLASH-TV reports it as “Gaze”
(few false negatives)

TP/(TP+FN)Sensitivity

High specificity indicates that frames in which child is not watching television, FLASH-TV reports
it as “no gaze” (few false positives)

TN/(TN+FP)Specificity

High PPV indicates FLASH-TV “gaze” output corresponds to the child actually watching televisionTP/(TP+FP)PPVf

High NPV indicates FLASH-TV “no gaze” output corresponds to the child actually NOT watching
television

TN/(TN+FN)NPVg

High FPR corresponds to incorrectly identifying the child is watching television, when the child is
actually NOT watching television

FP/(FP+TN)FPRh

aTP: true positive (ie, FLASH-TV gaze agrees with the gold standard).
bTN: true negative (ie, FLASH-TV no gaze agrees with the gold standard.
cFP: false positive (ie, FLASH-TV gaze does not agree with the gold standard).
dFN: false negative (ie, FLASH-TV no gaze does not agree with the gold standard).
eFLASH-TV: Family Level Assessment of Screen Use in the Home-Television.
fPPV: positive predictive value.
gNPV: negative predictive value.
hFPR: false positive rate.

For face detection and face verification, the results were
presented for the overall video data and stratified on whether
the child’s gaze was on the television or not, as identified during
the gold standard staff-coded video data. Stratifying by child
gaze allows FLASH-TV to be evaluated in the context in which
FLASH-TV needs to perform well, when the child is actually
watching television, to estimate the target child’s screen viewing
or use time. The robustness or reliability of the face verification
to identify the target child across different days was assessed
in design test 3, when the parent-sibling triad returned to the

observation laboratory for a second data collection session about
1 week after the initial data collection. As the 2 visits were
conducted on the same family, the average difference between
visits in the outcome metrics (sensitivity, specificity, accuracy,
PPV, NPV, and false positive rate) was calculated and tested
using the nonparametric Wilcoxon signed-rank test.

To further assess the face verification across different days,
exploratory generalized linear modeling was conducted to
determine the difference in the outcome metrics (sensitivity,
specificity, accuracy, PPV, NPV, and false-positive rate) by
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visit. A compound symmetry correlation structure was assigned
to account for the nesting of repeated measurements within each
family per visit (because of multiple frames per visit). A Poisson
distribution was specified for all metrics except PPV, where a
binomial was specified to fit the data. The effects of visit and
family were tested as the main effects. The estimated difference
in the response probabilities (least square means) of the outcome
was obtained.

The goal of FLASH-TV was to estimate the target child’s
television viewing time. The target child’s total television
viewing time was estimated by sequentially running the 3 steps
of FLASH-TV and summing the duration of time the child’s
gaze was on the screen (given in minutes:seconds format). To
assess the target child’s television viewing time estimated by
the FLASH-TV system compared with the gold standard, the
agreement between the number of frames identified as television
viewing (after sequentially running each step) by the
FLASH-TV was compared with staff codes using the prevalence
and bias-adjusted κ. Moreover, reliability was assessed by means
of the intraclass correlation coefficient (ICC) using a generalized
linear mixed model accounting for the binary outcome
(television viewed or not viewed). A random frame nested
within the family effect was specified to reflect the ordering of
the frames within family. Correlations of ≤0.35 were defined

as weak, 0.36 to 0.67 as moderate, ≥0.68 as high, and ≥0.9 as
very high [37]. The ICC was also used to determine the
reliability of the target child’s total television viewing time
estimated by the FLASH-TV system compared with the gold
standard using a generalized linear mixed model specifying a
lognormal distribution for the continuous outcome and random
frame nested within the family. Data from the in-home data
collection were used to independently test each algorithm step
and then the sequential assessment of each step for the overall
estimation of television viewing time for the child. Analyses
were conducted using SAS (version 9.4, SAS Institute, Inc).
Significance was determined using a two-sided α value of .05.
Face recognition and verification algorithms can introduce
potential race bias if the algorithm accuracy varies according
to the race of the child [38]. Therefore, we report television
viewing time estimates from FLASH-TV and the gold standard
stratified by child race, but the small sample size precludes
statistical comparisons.

Results

Overview
The demographics of the 21 parent-child triads (Table 3) indicate
a racially and ethnically diverse sample of families took part in
the design tests.
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Table 3. Demographics.

Design test 4 (in-home)Design test 3 (2 visits)Design test 2Design test 1Overall

556521Parent-sibling triads (n)

10 (100)10 (100)12 (100)10 (100)42 (100)Children, n (%)

10.5 (2.0)10.5 (1.9)9.9 (2.1)10.1 (2.5)10.2 (2.1)Age (years), mean (SD)

7 (70)7 (70)5 (42)6 (60)25 (57)Sex (female), n (%)

Race and ethnicity, n (%)

6 (60)2 (20)4 (33)4 (40)16 (38)Non-Hispanic White

2 (20)4 (40)0 (0)2 (20)8 (19)Hispanic White

0 (0)2 (20)6 (50)2 (20)10 (24)Non-Hispanic Black

0 (0)2 (20)0 (0)0 (0)2 (5)Hispanic Black

0 (0)0 (0)2 (17)0 (0)2 (5)Asian

2 (20)0 (0)0 (0)2 (20)4 (10)Other (mixed or Hispanic Other)

5 (100)5 (100)6 (100)5 (100)21 (100)Parent, n (%)

42.8 (6.7)43.8 (8.6)46 (9.4)42.6 (6.9)43.9 (8.7)Age (years), mean (SD)

3 (60)5 (100)6 (100)5 (100)19 (91)Sex (female), n (%)

Race and ethnicity, n (%)

3 (60)1 (20)2 (33)3 (60)9 (43)Non-Hispanic White

1 (20)2 (40)0 (0)1 (20)4 (19)Hispanic White

0 (0)1 (20)3 (50)1 (20)5 (24)Non-Hispanic Black

0 (0)1 (20)0 (0)0 (0)1 (5)Hispanic Black

0 (0)0 (0)1 (17)0 (0)1 (5)Asian

1 (20)0 (0)0 (0)0 (0)1 (5)Other (mixed or Hispanic Other)

Education, n (%)

1 (20)1 (20)0 (0)0 (0)2 (10)High school

1 (20)2 (40)1 (17)2 (40)6 (29)Some college

2 (40)1 (20)3 (50)3 (60)9 (43)College

1 (20)1 (20)2 (33)0 (0)4 (19)Graduate school

Face Detection
Table 4 reports the outcomes for FLASH-TV face detection
algorithm alone. The FLASH-TV face detector achieved a mean
conditional (ie, when the child’s gaze was on the television)
sensitivity of 95.5% (SD 4.79%) with 0.43 (SD 0.51) false
positives per second for design tests 1 and 2 on approximately
33,000 test frames. For design test 3, the conditional sensitivity
was 96.4% (SD 3.61%) with 0.2 (SD 0.06) false positives per
second on approximately 4000 randomly selected test frames.
The face detector was also tested with the in-home data from
design test 4, which provided 7.5 hours of video data from 5
parent-sibling triads. The face detector’s conditional sensitivity
was 97.9% (SD 0.02%) with 0.3 (SD 0.15) false positives per

second on approximately randomly selected 20,000 test frames,
supporting a high accuracy in real-life scenarios and providing
greater confidence that the face detector is functioning at an
appropriate accuracy to be used in the three-step process of
estimating a child’s screen use on larger screens. Our current
FLASH-TV face detector is running at 20 frames per second.
Exploratory qualitative review of the false positives (regions
that are not human face) identified by the FLASH-TV face
detector included patterns in cushions and surroundings, cartoon
faces, and animal faces (Figure 5). Examples of false negatives
(human faces that are not detected) identified by FLASH-TV
face detector (lacking a red bounding box) included instances
when the faces were not oriented upright (eg, reclining on sofa),
were partially occluded, or were in low-light settings.
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Table 4. Family Level Assessment of Screen Use in the Home-Television face detectiona.

Positive predictive value (%; range)Sensitivity (%; range)

Design tests 1 and 2 (n=11 triads)

86.6 (67.4-93.9)91.9 (83.2-96.7)Overall (target child, sibling, and parent)

74.9 (53.6-93.0)95.5 (78.8-96.9)With gaze on television (target child)

55.1 (26.8-73.0)87.7 (78.8-96.9)Without gaze on television (target child)

Design test 3—two visits combined (n=5 triads)

83.5 (72.3-89.8)96.2 (93.4-98.7)Overall (target child, sibling, and parent)

61.9 (38.4-73.4)96.4 (87.5-100.0)With gaze on television (target child)

48.1 (37.6-64.0)89.8 (73.0-96.4)Without gaze on television (target child)

Design test 4—in-home observation (n=5 triads)

70.1 (54.5-86.6)92.0 (83.9-99.5)Overall (target child, sibling, and parent)

52.5 (30.8-75.4)97.9 (94.7-99.9)With gaze on television (target child)

42.1 (30.7-71.7)86.1 (65.2-97.5)Without gaze on television (target child)

aTrue negatives are not meaningful to assess for face detection because they represent everything in the video that is not detected as a face. Therefore,
accuracy, specificity, and negative predictive values (that depend on true negatives) were not calculated for face detection.
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Figure 5. Face detection results. (a) Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) face detector captures the faces
(indicated in red boxes) across tasks and lighting conditions. (b) Examples of false positives (regions that are not human face) identified by FLASH-TV
face detector. Notice the patterns identified as faces (B1, B3, B4, B6, B7, and B9); also the cartoon face detected (B2) and the animal face detected
(B8). (c) Examples of false negatives (human faces that are not detected) by FLASH-TV face detector (lacking a red bounding box). The face detector
has difficulty in detecting faces, when the faces are not orientated upright (C3, C4, and C7), when the face is partially occluded (C5, C6, and C8), and
when the lighting is dark (C2 and C9).

Face Verification
Table 5 reports the outcomes for FLASH-TV face verification
algorithm alone. For design tests 1 and 2, our face verification
method achieved a mean conditional (ie, when the child’s gaze
was on the television) sensitivity of 93.1% (SD 7.03%) for
identifying the target child on approximately randomly selected
33,000 test frames. For design test 3, a conditional sensitivity

of 96.1% (SD 3.77%) was achieved on randomly selected
approximately 4000 test frames. Similarly, on our in-home data
set from design test 4, the sensitivity was 91.3% (SD 15.71%)
for identifying the target child. The current speed of face
verification is 12 frames per second. Examples of false positives
and false negatives for face verification for the target child can
be found in Figure 6. Exploratory qualitative review of the errors
revealed these happened when the target child’s face was
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partially occluded when they were not watching television and
when the lighting in the room was dim, similar to face detection.
Note that not identifying the target child’s face when there is
no-gaze will not affect our final television watching time.

Using the Wilcoxon signed-rank test to test the mean difference
across visits 1 and 2 in design study 3, small differences in mean
sensitivity (−0.05, SD 0.46), accuracy (−0.01, SD 0.18), and
NPV (−0.01, SD 0.15) were identified, with mean values being
lower in visit 2 than in visit 1. These differences were identified
overall, and were no longer significant for times when the child’s
gaze was on television for all outcomes except NPV. The

generalized linear models showed that the outcome metrics
(sensitivity, specificity, accuracy, PPV, NPV, and false positive
rate) did not differ by visit. Mean differences in response
probabilities for visit 2 relative to visit 1 for the sensitivity was
0.99 (P=.86), specificity 0.99 (P=.37), accuracy 0.99 (P=.93),
PPV 0.87 (P=.48), NPV 1.0 (P=.87), and the false-positive rate
1.07 (P=.27). Mean differences did not change remarkably after
stratifying by gaze status (not shown). However, large
differences between family pairs (>20%) were observed only
for PPV, specifically 23.32% (95% CI 16.71%-32.29%) and
44.41% (95% CI 32.77%-60.18%). These differences persisted
only when the child was viewing television.

Table 5. Family Level Assessment of Screen Use in the Home-Television face verification of target child.

Negative predictive

value (%; range)a
Positive predictive

value (%; range)a

Specificity

(%; range)a

Sensitivity

(%; range)a

Accuracy

(%; range)a

Design tests 1 and 2 (n=11 triadsa)

93.8 (88.9-97.7)89.0 (65.0-98.8)97.2 (88.6-99.6)78.0 (59.2-92.3)92.8 (83.6-96.8)Overall

97.7 (93.4-99.6)98.2 (90.5-100)99.4 (96.9-100)93.1 (77.1-98.9)97.8 (94.6-99.6)With gaze on television

92.4 (87.1-97.4)85.9 (54.8-98.8)96.6 (84.9-99.4)71.9 (51.9-92.0)91.2 (87.7-96.5)Without gaze on television

Design test 3—two visits combined (n=5 triads)

95.84 (87.3-99.1)89.7 (64.2-98.9)97.3 (90.3-99.6)83.7 (42.2-97.2)94.5 (85.5-99.0)Overall

98.08 (95.9-99.5)89.5 (53.7-100)96.2 (82.8-100)96.1 (85.9-98.6)96.1 (83.5-99.6)With gaze on television

93.80 (84.6-99.4)90.1 (65.5-100)97.7 (90.2-100)73.9 (24.6-98.2)92.9 (84.7-98.7)Without gaze on television

Design test 4—in-home observation (n=5 triads)

92.7 (73.8-99.4)97.7 (93.9-99.5)99.1 (98.5-99.75)86.9 (66.3-98.7)94.3 (82.6-99.1)Overall

93.6 (72.6-99.5)99.7 (99.3-100)99.8 (99.5-100)91.3 (63.4-99.9)95.7 (81.3-99.9)With gaze on television

89.9 (79.7-98.6)92.3 (81.0-98.7)96.8 (94.8-98.8)79.7 (42.0-97.0)91.2 (83.3-96.1)Without gaze on television

aData analyzed at the frame (ie, bounding box). Given the small sample sizes in each design test, the mean and range (minimum–maximum) are reported.
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Figure 6. Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) face verification results. This figure shows the frames from
different participants where the FLASH-TV face verification identifies the target child in the frame. True positives indicate when the child is identified
correctly. False positives indicate when a parent or sibling is mistaken as the target child and false negatives indicate when the target child is not identified
correctly. Most of the errors occur when the target child’s face is partially occluded when they are not watching television and when the lighting in the
room is dim. Note that if the target child’s face is not identified when there is no-gaze, it will not affect our television viewing time.

Gaze Detection
Table 6 reports the output for the gaze estimation algorithm
alone. For gaze detection with television position in center (10
families), the mean accuracy was 87.2% (SD 7.38%) and mean
sensitivity and specificity of 81% (SD 25.3%) and 86.8% (SD
7.14%), respectively (Table 5). For television position to the

left of the room (5 families), the mean accuracy was 87% (SD
6.05%) and mean sensitivity and specificity of 76.2% (SD
20.9%) and 90.8% (SD 2.94), respectively. The current speed
at which our gaze detection processes the frames is 30 frames
per second. Figure 7 illustrates the most common errors for gaze
estimation.
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Table 6. Gaze detection of target child.

False positives rate
(%; range)

Negative predictive
value (%; range)

Positive predicative
value (%; range)

Specificity (%;
range)

Sensitivity (%;
range)

Accuracy (%;
range)

Television position

8.82 (3.1-24.3)87.8 (75.3-98.1)82.1 (68.1-93.7)91.2 (75.8-96.9)73.2 (27.8-95.3)88.0 (74.1-93.1)Center of wall (n=10)a

9.2 (5.62-12.7)91.5 (76.5-98.7)74.2 (65.5-86.2)90.8 (87.3-94.4)76.2 (54.0-96.1)87.1 (76.8-91.8)Left corner of room

(n=5)a,b

17.3 (8.9-28.8)55.1 (30.7-80.6)90.8 (73.4-97.3)82.7 (71.2-91.1)73.4 (45.2-95.4)75.6 (54.9-93.7)In-home television posi-

tion varied (n=5)c

aDesign tests 1 to 3 (in observation laboratory data collection).
bOne family’s data from design tests 1 to 3 were obtained from a unique position (below television) and could not be used in gaze estimation training
or testing.
cDesign test 4 (in-home data collection).

Figure 7. Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) gaze estimation errors. This illustrates examples of errors
from the FLASH-TV gaze estimator. The top two rows show false negatives resulting from FLASH-TV identifying no gaze on television, but staff
coded gaze (gold standard). Qualitative assessment identified common reasons for false positives included low-light conditions (second row), the child’s
face orientation not orientated upright (first row leftmost). Bottom two rows show false positives when FLASH-TV identified gaze, but the staff coded
no gaze (gold standard). Qualitative assessment identified common reasons for false negatives included that gaze estimator has difficulty when children
pay attention to something close to the television but not on the television (third row) and low-resolution (fourth row middle). The television location
is indicated by a green box at the bottom of each image.

Overall Television Viewing Time Estimation
When implementing the 3 steps sequentially to estimate the
target child’s television viewing time, the ICC was 0.725 when
comparing the child’s estimated television viewing time per the
FLASH three-step algorithm to the gold standard for total time,
coded by staff (Table 7). The prevalence and bias-adjusted κ
statistic was 0.728 (95% CI 0.727-0.729; P<.001) and the ICC
comparing the number of frames identified as television viewing

by the FLASH-TV with the human labelers was 0.401. The
breakdown of correlations under different conditions is shown
in Table 7. Figure 8 shows the comparison of television viewing
time between FLASH-TV and the gold standard across 20 triads
from our design tests.

A comparison of the television viewing time estimated by
FLASH and the gold standard by race and ethnicity found that
FLASH-TV underestimated television viewing time in all groups
(Table 8).
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Table 7. Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) estimation of target child’s television viewing time during a
90-minute observation period.

ICC of television
viewing frame by
frame

ICCb of total televi-
sion viewing time

Television viewing

frame by frame, κa

(95% CI)

Gold standard televi-
sion viewing time
(minutes; range)

FLASH-TV estimated
television viewing time
(minutes; range)

Television position

0.4010.7250.728 (0.727-0.729)c21.72 (8.93-43.0)17.47 (4.7-44.0)Overall

0.4280.7170.787 (0.786-0.788)c20.2 (12.2-43.0)17.08 (4.7-44.0)Center of wall (n=10)d

0.3920.7620.791 (0.789-0.793)c13.24 (8.93-22.5)12.26 (5.5-23.3)Left corner of room (n=5)d,e

0.2930.3540.499 (0.497-0.502)c33.3 (23.3-42.7)23.5 (9.9-37.4)In home, television position

varied (n=5)f

aPrevalence and bias-adjusted κ statistic.
bICC: intraclass correlation.
cP<.001.
dDesign tests 1 to 3 (in observation laboratory data collection).
eOne family’s data from design tests 1 to 3 were obtained from a unique position (below television) and could not be used in gaze estimation training
or testing.
fDesign test 4 (in-home data collection).

Figure 8. Scatter plot of gold standard television viewing time versus Family Level Assessment of Screen Use in the Home-Television (FLASH-TV)
prediction. This plot compares gold standard television viewing time with FLASH-TV prediction for the 20 triads from our design tests. The television
position for each data point is indicated in the legend. Most of our data points lie along the reference diagonal line (y = x) indicating the agreement
between FLASH-TV and gold standard. The points below the diagonal indicate FLASH-TV underestimates (y < x) the television viewing time, whereas
the points below the diagonal indicate that FLASH-TV overestimates (y > x) the viewing time. CNRC: Children’s Nutrition Research Center.
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Table 8. Exploration of race bias of Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) television viewing estimates.

Gold standard television viewing time (minutes), mean
(SD)

FLASH-TV estimated television viewing time (minutes),
mean (SD)

Child race and ethnicity

13.26 (3.45)7.62 (2.41)Blacka (n=5)

27.93 (9.95)25.17 (10.46)Hispanicb (n=5)

25.16 (13.43)20.0 (12.38)Non-Hispanic White (n=8)

12.63 (0.92)12.06 (3.85)Otherc (n=2)

aBlack includes African American and Hispanic Black
bHispanic includes Hispanic-White and Hispanic-unknown
cOther includes Asian and Hispanic-Filipino.

Participants’ Thoughts About FLASH-TV
Most parents felt comfortable with or neutral toward having
FLASH-TV in their home, especially as it would be helpful for
them to see how much screen time their children obtained. Some
participants were concerned with privacy: whether the camera
would be recording all the time and who will have access to
their data. Suggestions for improvement included having the
ability to turn off the device at will, limiting to only video or
audio data, and getting a breakdown about how their data are
stored and processed.

Discussion

Principal Findings
FLASH-TV is being developed as an automated, objective
assessment for measuring children’s screen use on stationary
screens (eg, televisions, gaming systems, and computers) in the
home, using deep-learning computer vision algorithms to
process video data obtained from in front of a stationary screen.
The FLASH-TV system estimates the time a child spends
watching a specific screen by processing video data in three
sequential steps for (1) face detection, (2) face verification of
the target child, and (3) gaze detection of the target child. The
findings from our study suggest that with further refinement,
the FLASH-TV system can be a useful assessment tool for
children’s viewing of large stationary screens. Output from
FLASH-TV could be used in combination with other new
assessment tools of other screen media use [11] to develop a
composite of children’s screen media use across platforms.

FLASH-TV Performance of Algorithms
The current version of FLASH-TV demonstrated high sensitivity
for detecting faces when the child’s gaze was on the television
(95.5%-97.9%) and poor-to-moderate PPV (52.5%-74.9%;
Table 4). In developing the FLASH system, a low PPV was
accepted for face detection to maximize the sensitivity (true
positive rate) and keep false negatives low. This allows the
FLASH-TV system to have a larger pool of images for the
second step, face verification, which filters out all segments
from step 1 that are not the target child, resulting in fewer false
negatives from incorrect detection of the target child.

FLASH-TV demonstrated high (all >90%) accuracy, sensitivity,
specificity, NPV, and PPV (Table 5) for correctly identifying
the target child’s face under the condition that the child’s gaze

was on the television, even when tested in the child’s home.
The small differences in outcome metrics identified for face
verification across visits by the same child were only present
when the child was not watching television, except for the NPV.
A significant difference in NPV between the 2 visits may
indicate that FLASH-TV has some difficulty in identifying true
negatives across days for a child. However, in this small sample,
there were no differences in the outcome metrics by visit with
the generalized linear models, which accounted for the
correlation of data within a family. However, differences were
found between families only for PPV. Qualitative assessment
of the video data for face verification, where FLASH-TV
performed the worst, suggests that the primary sources of error
were when the child’s face was partially occluded or in dim
lighting. Training the FLASH-TV face verification further in
simulated darkened images of the child may help alleviate this
moving forward.

The accuracy, specificity, and NPV were relatively high (>85%)
for FLASH-TV when the gaze assessment was in the observation
laboratory, compared with the home (>75%). However, the
sensitivity was only moderate (73.2%-76.2%) and similar for
each condition. PPV was higher and NPV was lower for in-home
assessments. Data collected in the home, a free-living situation,
are likely to contain more variability that will need to be
addressed. In addition, qualitative assessment of gaze estimation
suggests that the primary sources of error were low light, low
resolution, and the child’s head orientation not being upright.
Training the FLASH-TV gaze estimator on more varied data
from different room configurations, different-sized televisions,
and different locations of the television in the room should help
address this moving forward. Simulating the current data with
different head configurations and lighting conditions can provide
additional training data to further refine the gaze estimator.

FLASH-TV Estimation of Television Viewing
When combining the 3 sequential CNN visual-processing steps,
FLASH-TV estimation of the child’s television viewing time
was overall good (ICC for overall time watched television of
0.725 across conditions). However, a moderate ICC (0.401)
was obtained when comparing the FLASH-TV system output
for television viewing with the staff codes at the frame level.
This suggests that sources of variability other than FLASH-TV
or staff contribute to the estimation of a child’s television
viewing time at the frame level, such as family unit, television
position, or lighting during data collection. Therefore,
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FLASH-TV should not be used to assess gaze at extremely
refined time increments defined at the frame level (1/30th of a
second). In fact, researchers are unlikely to analyze children’s
television viewing data at the second or minute level, reducing
the impact of these unexplained sources of variability at the
frame level. The next steps in refining the FLASH-TV output
will include assessing whether smoothing the data into longer
time epochs (eg, 5 s, 15 s, or 30 s) will smooth the variability
caused by errors at the frame level to help improve the
robustness of FLASH-TV in estimating children’s television
viewing.

Qualitative analyses of the video data for the families where
FLASH-TV performed the worst in estimating the child’s
television watching time found that differences in the child’s
viewing position were the most common challenge. Similar to
other approaches using video images to measure children’s
screen use [39], accuracy was impaired when children were
reclining or laying on a couch or chair causing part or most of
their face to be obscured. In these instances, the FLASH-TV
often would not correctly identify the target child or their gaze,
causing underestimation of television viewing. Training the
FLASH-TV algorithms on larger data sets with the child
reclining or laying down may help this.

Despite its current limitations, FLASH-TV is a significant
improvement over current self- or parent-report methods that
estimate how much time children spend watching television
using gross categories. The ICC for the child’s total television
viewing time for FLASH-TV was high (0.725), slightly better
than that previously reported for television diaries (r=0.67), and
much better than general estimates by parents (r=0.27) [18],
which are commonly used in research [17]. Given how the data
are collected within a family, our ICC estimates take into
account nesting within the family unit, making them pragmatic
and beneficial for powering future family-based studies.
FLASH-TV also substantially decreases participant burden,
which was noted to generate selection bias when using television
diaries [18]. Other tools, such as TV Allowance, have been
proposed as an objective assessment of television viewing
among children [40]. The TV Allowance was developed for
parents to limit their child’s access to television screens and
required the child or parent to enter the child-specific code each
time the child watches television. This may cause
misclassification errors if the child is not watching the entire
time the television is turned on or watches under another family
member’s code. The TV Allowance only had a moderate
correlation with parental estimates of television viewing in 4-to
7-year-old children [40] and preschool children [41]. In both
studies, no comparison was made to the gold standard for direct
or video-recorded observations. To our knowledge, the TV
Allowance is no longer available for purchase. Forward-facing,
wearable cameras automated to record images at frequent time
intervals have also been investigated to estimate children’s
screen use [39]. Such cameras appear to effectively capture
images of screens (televisions, laptops, and smartphones) to
which the child is exposed when the child is upright. However,
similar to FLASH-TV, these cameras had problems when the
child was laying down (capturing ceiling images instead). In
addition, exposure to a screen does not mean that the child is

attending to the programming. Furthermore, such cameras are
dependent on the child wearing the camera, and wear time
declines every evening over a 3-day study period from 78% to
51% of the evening time [39]. Placing the camera on the
television instead, like FLASH-TV, places less burden on the
child to complete the television watching assessment.

Race Bias
Machine learning algorithms for face recognition and
verification have come under scrutiny for not being as accurate
across races, termed race bias [38]. Previous work has
demonstrated that the source of race bias is related to both
data-driven factors (eg, the representativeness of training data
sets, the representativeness of the study population, and image
conditions) and scenario-modeling factors (eg, thresholds used
for face verification) [38]. Exploratory analyses of FLASH-TV
suggest FLASH-TV underestimation of television viewing in
all groups, but this may be greater among Black and
non-Hispanic White children. However, the small sample size
and variability in television viewing time between groups make
statistical comparisons difficult at this stage. The design studies
intentionally included a diverse sample of children to provide
diverse training data to minimize the data-driven causes of race
bias with FLASH-TV. Further refinement of FLASH-TV is
needed, with continued attention to prevent the possibility of a
race bias. If race bias occurs with larger sample sizes,
approaches to mitigate race bias will be explored such as
race-specific thresholds for face verification [38].

Privacy Concerns
Assessments based on the collected images of a child’s varied
surroundings raise concerns about privacy. Scientists using
forward-facing wearable cameras have developed frameworks
to manage the ethical considerations for capturing vast amounts
of image data in various contexts [42,43]. The single location
and context of the image data collected by FLASH-TV is
different from that of wearable cameras. However, privacy
issues remain. Some parents who participated in the design
studies raised concerns about privacy issues with FLASH-TV.
Once developed and deployed as a tool for measuring children’s
television watching, the goal is to have FLASH-TV preserve
privacy by only storing the processed output of the FLASH-TV
machine learning algorithms and not storing the video data.
This should address most of the parents’ concerns, but
illustrating this to families before data collection may be
important. However, until FLASH-TV has undergone further
refinements and enhancements, studies require the video data
to be stored to allow a gold standard for training the machine
learning algorithms and to compare the FLASH-TV output.
Such validation studies are critical to ensure the resulting system
accurately captures a child’s television viewing behaviors and
times [17] to allow for higher quality assessment in exposure
studies and to assess the effect of television viewing reduction
interventions.

Limitations
To date, FLASH-TV has only been assessed during relatively
short periods in task-based protocols to simulate scenarios of
children’s typical screen use behaviors. Future studies will need
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to assess how robust FLASH-TV is in estimating a child’s screen
use across multiple days. Most of the design tests conducted
during the development of FLASH-TV were conducted in an
observational laboratory. The location of the television in the
room varied slightly across families, in addition to the
participants’ location during each protocol. However, gaze
estimation depends on the gaze vectors of the child. Therefore,
the algorithms need to be trained on additional video data to
capture a child’s gaze on a television screen in different
positions in the room, resulting in different potential gaze
vectors for the child. The sample of participants who took part
in the design tests to help develop FLASH-TV were of varied
race and ethnic backgrounds. FLASH-TV may not perform
equally well for face detection and face verification across all
families. Future analyses in larger, diverse data sets should
evaluate whether child race, ethnicity, age, and similarity to
sibling affect FLASH-TV time estimates for television viewing
to ensure FLASH-TV works well across all groups of children.

Finally, FLASH-TV does not assess content watched, or whether
the child was active or sedentary while watching television or
playing videogames. Future research should investigate the
integration of FLASH-TV output with other data sources, such
as accelerometer data, to better characterize the activity levels
of children as they engage with screens.

Conclusions
We have designed, developed, and performed initial design tests
of FLASH-TV, the first-of-its-kind, quantitative, objective,
automatic measurement tool for children’s television viewing.
FLASH-TV offers a critical step forward in the assessment of
children’s television viewing. Objective assessment of television
viewing from FLASH-TV could be added to output from
assessment tools of other screen platforms, for a composite
measure of screen use among children to better inform research
on the impact of screen use on children’s health and
developmental outcomes.
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